版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、會(huì)計(jì)學(xué)1材料力學(xué)材料力學(xué)08彎曲變形彎曲變形 2工程實(shí)例工程實(shí)例吊車大梁吊車大梁橋式起重機(jī)橋式起重機(jī)小車爬坡困難小車爬坡困難第1頁/共44頁 3頂針頂針尾架尾架第2頁/共44頁 4過量摩損軸軸目錄電動(dòng)機(jī)電動(dòng)機(jī)軸軸(定子定子)(轉(zhuǎn)子轉(zhuǎn)子)SHAFT第3頁/共44頁 5離心泵齒輪泵葉輪葉輪葉片葉片泵殼泵殼GEAR WHEEL第4頁/共44頁 6wx1 撓曲近似微分方程撓曲近似微分方程一一. 撓度和轉(zhuǎn)角撓度和轉(zhuǎn)角撓度轉(zhuǎn)角關(guān)系撓度轉(zhuǎn)角關(guān)系: tan截面形心截面形心 x 方向位移極微小方向位移極微小, 忽略不計(jì)忽略不計(jì)(小變形小變形)(連續(xù)光滑(連續(xù)光滑)彎曲前后,橫截面始終垂直于軸彎曲前后,橫截面始終
2、垂直于軸線線 ( 導(dǎo)數(shù)之幾何意義導(dǎo)數(shù)之幾何意義 )1轉(zhuǎn)角轉(zhuǎn)角2 截面繞中性軸轉(zhuǎn)過的截面繞中性軸轉(zhuǎn)過的 角度角度. 截面形心的豎向位移截面形心的豎向位移, 撓度撓度w 撓曲線撓曲線截面間夾角軸線間夾角截面間夾角軸線間夾角)x(fdxdw,順時(shí)順時(shí)為正為正向下向下為正為正.)(xf( Approximately differential Equation for Deflection Carve )DeIlection and slope第5頁/共44頁 7 曲率曲率 -曲線曲線 微分關(guān)系微分關(guān)系:略去高階小量略去高階小量22dxwd1 二二.撓曲線近似微分方程撓曲線近似微分方程zEIxMx)()
3、(1 (考慮全梁各個(gè)截面考慮全梁各個(gè)截面)z22EI)x(Mdxwd 23222)(1dxdwdxwd wxo 中性層中性層 曲率半徑曲率半徑 1022 dxwdM(x) 0號號與與坐標(biāo)坐標(biāo)取向、取向、 有關(guān)有關(guān)彎矩符號彎矩符號規(guī)定規(guī)定zEI)x(Mdxwd22二階撓曲近似微分方程二階撓曲近似微分方程第6頁/共44頁 82 積分法求梁位移積分法求梁位移撓曲線近似微分方程:撓曲線近似微分方程:dxdwEIz)x(MdxwdEIz 22再積分一次再積分一次 撓度方程撓度方程:wEIz二階線性非齊次二階線性非齊次 逐次積分,降階逐次積分,降階積分一次積分一次 轉(zhuǎn)角方程轉(zhuǎn)角方程: zEI dxxM)(
4、dxdx)x(Mz22EI)x(MdxwdCx D( Determine Displacements by Method of lntegration )C 第7頁/共44頁 92 2 積分法積分法 積分常數(shù)由梁積分常數(shù)由梁支承條件支承條件和和連續(xù)條件連續(xù)條件確定確定:0 Aw0 Aw0 A AwARALww(-彈簧變形)彈簧變形)AL 裂裂ARAL 斷斷ARALww ALw支承條件支承條件1 連續(xù)條件連續(xù)條件2AAAAAARwAR 分界點(diǎn)A 第8頁/共44頁 10ABqCqLF21 wxL21L21 例例1 求轉(zhuǎn)角和撓度方程,并求最大轉(zhuǎn)角和求轉(zhuǎn)角和撓度方程,并求最大轉(zhuǎn)角和 撓度撓度 )x(M
5、dxwdEI22( )dxdwEI EIw(梁梁EI已知已知)Fx1)列撓曲微分方程列撓曲微分方程解解3)定積分常數(shù))定積分常數(shù)支承條件支承條件0)L(w20)(2 L 連續(xù)連續(xù) 條件條件 )2(1L )2(1Lw1221CFx 232)2(6121CLxqFx2)2(21LxqFx2243)2(24161DxCLxqFx11361DxCFx1x2x2)積分)積分)2(2L )2(2Lw代入代入第9頁/共44頁ABqCqLF21 wxL21L214)轉(zhuǎn)角方程和撓度方程轉(zhuǎn)角方程和撓度方程5)最大轉(zhuǎn)角和最大撓度最大轉(zhuǎn)角和最大撓度3214813qLCC42138471qLDDAww maxA max
6、 EIw4343384714813)2(24161qLxqLLxqFx 43338471481361qLxqLFx 1)各段)各段M(x)按同一側(cè)算;按同一側(cè)算;若遵循若遵循:各積分各積分 常數(shù)常數(shù) 將兩兩將兩兩 相等相等2)積分時(shí)均不打開括號)積分時(shí)均不打開括號 ( x a )A Aw34813qLEI 438471qLEI32481321qLFx 43238471)2(6121qLLxqFx EI第10頁/共44頁 12aACFxwBb*例例2 求梁轉(zhuǎn)角方程和撓度方程,并求最大轉(zhuǎn)角和撓度求梁轉(zhuǎn)角方程和撓度方程,并求最大轉(zhuǎn)角和撓度 (EI已知,已知,l = a + b,a b )解解1)求反
7、力(整體平衡)求反力(整體平衡),分段分段:2)彎矩、微分方程并積分彎矩、微分方程并積分22dxdwEI)x(EIdxdwEI111 3)定積分常數(shù)定積分常數(shù)1EIw2EIw)x(MdxwdEI12112(1)x(MdxwdEI22222)()(21aa )a(w)a(w21 連續(xù)連續(xù)條件條件0)0(1 w支承支承條件條件,axx 211x2xlFa02 )(lwlFb1xlFb(2))ax(FxlFb22(1)1212CxlFb (2)2222)(222CaxFxlFb (1)111316DxCxlFb (2)222323)(662DxCaxFxlFb 第11頁/共44頁 134)轉(zhuǎn)角方程和
8、撓度方程轉(zhuǎn)角方程和撓度方程代入解出代入解出)bl(lFbCC22216 021 DD1EI 2EI 3122116)(6xlFbxbllFbEIw 32322222)(66)(6axFxlFbxbllFbEIw ab1x2xACDFxw1)各段)各段M(x)按同一側(cè)算;按同一側(cè)算;若遵循二若遵循二規(guī)律規(guī)律 :可得各積分常數(shù)可得各積分常數(shù)兩兩兩兩 相等相等2)積分時(shí)均不打開括號)積分時(shí)均不打開括號( x a ))(622221bllFbxlFb )(6)(22222222bllFbaxFxlFb B第12頁/共44頁 145)最大轉(zhuǎn)角和撓度最大轉(zhuǎn)角和撓度)(6maxalEIlFabB ,blx3
9、22 )0dxd(2 令令, lx 分析分析 wmax 位置位置:結(jié)論:結(jié)論: 對簡支梁,荷載作用點(diǎn)對對簡支梁,荷載作用點(diǎn)對 w max 位置影響不大位置影響不大. maxwb= 0, b=l/2, 其余當(dāng)在二者之間;其余當(dāng)在二者之間;且且wmax與跨中與跨中 w 相比誤差不超過相比誤差不超過3 BFmaxwwabACxFFx=0.5l .x=0.577l ;0dxdw1( 令令 )ax(FxlFbdxwdEI2222221EI )(622221bllFbxlFb 不論荷載作用在何處(只要同向),均可認(rèn)為不論荷載作用在何處(只要同向),均可認(rèn)為w max 發(fā)生在跨中發(fā)生在跨中( 用跨中用跨中
10、w 代替代替 ) 第13頁/共44頁 15(2I)(I)F(I)L/4L/4L/4L/41)反力反力2)彎矩、微分方程、彎矩、微分方程、 積分(分段積分(分段)對稱對稱 (荷載、幾何尺寸、支承荷載、幾何尺寸、支承),)x(MdxwdEI212222)2(dxwdIE dxdwEI2)x(EIdxdwEI11 1EIw223224DxCxFEIw (2)3)定積分常數(shù)定積分常數(shù)連續(xù)連續(xù)條件條件)4()4(21LL )4()4(21LwLw )2(2L )0(1w支承支承條件條件求求w2 2 積分法積分法 例例3 解解F/2(1)Fx21 (2)Fx21 (1)1241CFx (2)281CFx
11、(1)11312DxCxF xx0 0 本問題僅算一半即可本問題僅算一半即可第14頁/共44頁 16211285FLC 01D327681FLD 22321FLC 可解出可解出2 2積分法求梁變形積分法求梁變形討討 論論積分法求變形有什么優(yōu)缺點(diǎn)?積分法求變形有什么優(yōu)缺點(diǎn)?彎曲位移第15頁/共44頁 173 疊加法求梁位移疊加法求梁位移 若干個(gè)載荷若干個(gè)載荷共同共同作用產(chǎn)生的位移作用產(chǎn)生的位移(撓度或轉(zhuǎn)角)(撓度或轉(zhuǎn)角),(變形疊加原理)(變形疊加原理) 載荷較多時(shí),積分法計(jì)算繁雜載荷較多時(shí),積分法計(jì)算繁雜疊加法疊加法較簡便較簡便若干個(gè)載荷(若干個(gè)載荷(包括外力偶、分布力包括外力偶、分布力)作用
12、時(shí),)作用時(shí),小變形,材料線彈性小變形,材料線彈性 M 與與F 成正比成正比( w、 )是荷載是荷載( F 、 m、 q )的一次的一次(線性線性)函數(shù)函數(shù)線性函數(shù)的線性函數(shù)的疊加原理疊加原理各載荷單獨(dú)作用產(chǎn)生的位移各載荷單獨(dú)作用產(chǎn)生的位移彼此獨(dú)立,互不影響彼此獨(dú)立,互不影響( 各簡單荷載下梁的各簡單荷載下梁的 w、 P 208 表表 )等于各載荷分別等于各載荷分別單獨(dú)單獨(dú)作用位移的作用位移的代數(shù)和代數(shù)和待定積分常數(shù)較多待定積分常數(shù)較多(n段段2n個(gè)常數(shù)個(gè)常數(shù))(Determine Displacements by Method of Superposition)第16頁/共44頁 18梁受力
13、如圖,梁受力如圖, q、l、EI 均已知均已知, 求求C 截面撓度截面撓度wC ;B截面轉(zhuǎn)角截面轉(zhuǎn)角B1)載荷分解載荷分解2)查表得三種情形查表得三種情形下下wC 、 BEIqlB2431 EIqlB1632 EIqlB333 EIqlwC384541 EIqlwC4842 EIqlwC1643 解解321BBBB 321CCCCwwwwqlql/2ABCl/2ql2qql1B l/2ABCl/2wC1l/2ABCl/2wC22B l/2ABCl/2wC33B wx例例1ql2第17頁/共44頁 1931iCiCww3) 疊加,疊加, 將各載荷作用結(jié)果求和將各載荷作用結(jié)果求和 31iBiB q
14、lql/2ABCl/2ql2qqlql21B l/2ABCl/2wC1l/2ABCl/2wC22B l/2ABCl/2wC3wx)(48113EIql EIqlEIqlEIql31624333 )(384114EIql EIqlEIqlEIql16483845444 第18頁/共44頁F1)B2)ABqC解解F = qa懸臂梁受力如圖示懸臂梁受力如圖示, q、l、EI均已知均已知. .求求B B截面轉(zhuǎn)角、撓度截面轉(zhuǎn)角、撓度 , ,BwB 梁上載荷分成梁上載荷分成 1) 2) AC變形變形不受不受BC影響影響(自由且無外力自由且無外力)查表查表1)EIqac632 BC本身無變形本身無變形222
15、CCBaww EIqa842)EIqa32 EIqa384 EIPlB221 EIPlwB331 2cw2c 2Ca 2Bw分兩段分析分兩段分析:EIqa2474但有但有剛體位移剛體位移(隨隨C剛體轉(zhuǎn)動(dòng)剛體轉(zhuǎn)動(dòng))3)疊加疊加 21iBiB 21iBiBwwEIqa6133 EIqa24714 qaaABC2B a )EIqa(63( 無無M/零曲率零曲率),第19頁/共44頁F=qaaDaaBAq解解疊加法求疊加法求 , ,DwB先將載荷分成情形先將載荷分成情形 1、2 DBAF1)qDBA2) 挑臂對內(nèi)跨變形無影響挑臂對內(nèi)跨變形無影響1)EIFlB1621 aw1B1D 2) 2B awBD
16、 22 3)疊加疊加 EIqawwiDiD245421 EIqaiBiB12321 BD位移由兩部分組成位移由兩部分組成:2Dw+ 自身自身變形(變形(形似懸臂形似懸臂)EIqa84 EIqa24114 挑臂挑臂隨內(nèi)跨作隨內(nèi)跨作剛體轉(zhuǎn)動(dòng)剛體轉(zhuǎn)動(dòng)EIqa43 EIqa44 1B 2B EIqa331Dw第20頁/共44頁 22DBAq2)EImlB32 討討 論論: :疊加法求變形有什么優(yōu)缺點(diǎn)?qa2qam2a2B aaaEIqa33 第21頁/共44頁 23qL/2L/2ABCbdb求求wc 分布力可看作無數(shù)微力的組合分布力可看作無數(shù)微力的組合.解解1)分解分解b)L(LEIL)L(b )qd
17、b(L22220262 2)疊加疊加Cbqdbx(note:x為位移為位移點(diǎn)的坐標(biāo))點(diǎn)的坐標(biāo)))bxL(EILFbx2226 qdb引起的引起的C截面位移為:截面位移為:b)/L(LEIL)/L)(qdb(222262 Cwdb)bL(EIqbL22204348 qdb該微段該微段qdb看作集中力看作集中力:距距B端為端為b處取微分長度處取微分長度 db,Cdw2LxCdw2L0EIqL47685 第22頁/共44頁 244 彎曲超靜定彎曲超靜定一一. 概念和基本方法概念和基本方法:超靜定超靜定梁梁:梁支反力數(shù)目梁支反力數(shù)目有效平衡方程數(shù)目有效平衡方程數(shù)目多余多余約束約束:超靜定超靜定次數(shù)次數(shù)
18、:從維持平衡而言不必要的約束從維持平衡而言不必要的約束反力數(shù)平衡方程數(shù)反力數(shù)平衡方程數(shù)LLqABDL多余約束多余約束/反力數(shù)反力數(shù) 說明:說明:多余約束多余約束/力數(shù)目是定值力數(shù)目是定值, 多余約束則可有多種選擇多余約束則可有多種選擇BFaaAXAYAMA( Simple Statically Indeterminate Beam )第23頁/共44頁 25加頂針、中心架、尾架,跟刀架加頂針、中心架、尾架,跟刀架中心架中心架刀座刀座尾架尾架頂尖頂尖車床車床超靜定梁實(shí)例超靜定梁實(shí)例第24頁/共44頁 26奉浦大奉浦大橋橋 超靜定梁實(shí)例超靜定梁實(shí)例大跨度預(yù)應(yīng)力大跨度預(yù)應(yīng)力 連續(xù)梁連續(xù)梁 橋橋 第2
19、5頁/共44頁 270BRBFBww)()(2)列出位移條件(變形協(xié)調(diào)條件)列出位移條件(變形協(xié)調(diào)條件)求梁內(nèi)力圖,梁抗彎剛度為求梁內(nèi)力圖,梁抗彎剛度為EIEI。RBF1)選多余約束解除,用相應(yīng)反力代替)選多余約束解除,用相應(yīng)反力代替EIFawFB3)(3EIaRwBRB3)2()(3 判定超靜定次數(shù)判定超靜定次數(shù)BFaaA3)力)力位移關(guān)系位移關(guān)系0BwFBw )(RBw )(EIFaaEIFa65232 FRB(相當(dāng)系統(tǒng))(相當(dāng)系統(tǒng))(幾何方程幾何方程)( P 208表表2 )EIaRB383 第26頁/共44頁 28由整體平衡求其他約束反力由整體平衡求其他約束反力 ),(83FaMA代入
20、幾何方程解出未知反力代入幾何方程解出未知反力)(165 FRB一當(dāng)一當(dāng)RB求出后,以后即為靜定問題求出后,以后即為靜定問題求解方法回顧求解方法回顧83165M(Fa)(無支座無支座B時(shí)時(shí)M 圖圖)1選多余約束去除,代以相應(yīng)反力(相當(dāng)系統(tǒng)選多余約束去除,代以相應(yīng)反力(相當(dāng)系統(tǒng) )比較變形比較變形,列位移條件列位移條件(變形協(xié)調(diào)條件)(變形協(xié)調(diào)條件)由力由力-位移關(guān)系解位移方程位移關(guān)系解位移方程求解求解多余未知力多余未知力123(其它反力可由平衡條件求出)(其它反力可由平衡條件求出))(1611FRABFaaA0386533 EIaREIFaBAMF165AR第27頁/共44頁 29(選(選A端轉(zhuǎn)
21、動(dòng)約束作多余約束)端轉(zhuǎn)動(dòng)約束作多余約束) 此時(shí)相應(yīng)此時(shí)相應(yīng)靜定靜定結(jié)構(gòu)為結(jié)構(gòu)為簡支梁簡支梁,超靜定梁超靜定梁相應(yīng)相應(yīng)多余多余未知力為未知力為約束力偶約束力偶(多余未知力多余未知力)MA本例也可選其它本例也可選其它約束為約束為多余約束多余約束BFaaA位移條件位移條件(變形協(xié)調(diào)條件):(變形協(xié)調(diào)條件):0A 變形條件應(yīng)與去除的約束相對應(yīng)變形條件應(yīng)與去除的約束相對應(yīng)BFaaAFA)(MA)(0第28頁/共44頁 30LLqABLqABD例例1 梁梁AB 和吊桿和吊桿 在在D處鉸接,梁抗彎剛度處鉸接,梁抗彎剛度EI ,桿抗拉剛度,桿抗拉剛度EA,1)可看可看桿作多余約束桿作多余約束2 2)位移條件:
22、)位移條件:)IAL(qALF64523 解解EAFLL FFFD)FLqL(EI6245134FqDwww Dw( P 209表表7、9 )wD二二. 算例算例:438)(2514LqEI48(23)LF求吊桿受力求吊桿受力從從D D 處拆開,梁桿分離處拆開,梁桿分離L 第29頁/共44頁 31寫出下列梁的變形條件寫出下列梁的變形條件兩梁彼此兩梁彼此互為約束互為約束,每一梁除固端外有圓柱約束,每一梁除固端外有圓柱約束超靜定超靜定去除圓柱約束去除圓柱約束超靜定結(jié)構(gòu)成為兩懸臂梁。超靜定結(jié)構(gòu)成為兩懸臂梁。注意注意: WD1 是否僅為F F 引起?21DDww 變形條件:變形條件:DRDFD1Dw2
23、Dw(主梁)(輔梁)L/2L/2F1.ABDC(二梁始終以圓柱相接,位移相等)(二梁始終以圓柱相接,位移相等)第30頁/共44頁 32BDww變形條件:變形條件:FF去除去除連桿約束連桿約束使原結(jié)構(gòu)變成兩個(gè)懸臂使原結(jié)構(gòu)變成兩個(gè)懸臂梁梁FPDBDwBwLL/2L/2P2.DABCEAFLL 兩梁都受連桿約束,每一梁除固端外還有連桿約束兩梁都受連桿約束,每一梁除固端外還有連桿約束超靜定超靜定4 4超靜定梁超靜定梁)L()L(P)L(PEI22232123 EIFL33 FDpDD)w()w(w)FP(EIL34853 EIFLwB33 L 第31頁/共44頁 33一一.剛度條件剛度條件,wwmax
24、建筑鋼梁的許可撓度:建筑鋼梁的許可撓度:1000l250l機(jī)械傳動(dòng)軸的許可轉(zhuǎn)角:機(jī)械傳動(dòng)軸的許可轉(zhuǎn)角:30001精密機(jī)床的許可轉(zhuǎn)角:精密機(jī)床的許可轉(zhuǎn)角:500015 梁剛度條件梁剛度條件 提高剛度措施提高剛度措施maxStiffness Condition of BeamRational Design of Beam for Stiffness第32頁/共44頁 341)由撓度表中查)由撓度表中查B 處轉(zhuǎn)角:處轉(zhuǎn)角: EIFlaB3 解解2)由剛度條件定軸徑:)由剛度條件定軸徑: B 1803EIFla EFladI3180644 111mmm1011150102063180121020643
25. EFladalCBAdF例例 已知鋼制圓軸左端受力已知鋼制圓軸左端受力 F20 kN,al m,l2 m,E=206 GPa。 軸承軸承B處許可轉(zhuǎn)角處許可轉(zhuǎn)角 =0.5 根據(jù)剛度要求確定軸直根據(jù)剛度要求確定軸直d根據(jù)要求軸須有足夠剛度,保證軸承根據(jù)要求軸須有足夠剛度,保證軸承B 處轉(zhuǎn)角不超過許用數(shù)值處轉(zhuǎn)角不超過許用數(shù)值 第33頁/共44頁 35二二.提高梁剛度的措施提高梁剛度的措施1)截面形狀合理,提高抗彎剛度)截面形狀合理,提高抗彎剛度截面積一定前提下慣性矩截面積一定前提下慣性矩I盡可能大盡可能大EIFlwn 風(fēng)電 塔筒第34頁/共44頁 362)受力合理,減小跨
26、度)受力合理,減小跨度改變支座形式改變支座形式maxwnqL5 5剛度條件及提高措施剛度條件及提高措施0.6L0.2L0.2Lq1/40LqL/3P/2P/2P=qLL/2L/21/41/61/8第35頁/共44頁 37大型載重列車大型載重列車大跨度預(yù)應(yīng)力大跨度預(yù)應(yīng)力 連續(xù)梁連續(xù)梁 橋橋 增加支承增加支承超靜定超靜定第36頁/共44頁 38絲杠絲杠進(jìn)給軸進(jìn)給軸尾架尾架頂尖頂尖主軸主軸刀座刀座5 5剛度條件及提高措施剛度條件及提高措施車床車床中心架中心架刀座刀座頂尖頂尖第37頁/共44頁 39小結(jié)小結(jié)1 1、明確撓曲線、撓度和轉(zhuǎn)角的概念、明確撓曲線、撓度和轉(zhuǎn)角的概念2 2、掌握計(jì)算梁變形的積分法和疊加法、掌握計(jì)算梁變形的積分法和疊加法3 3、學(xué)會(huì)用變形比較法解簡單超靜定問題、學(xué)會(huì)用變形比較法解簡單超靜定問題第38頁/共44頁Thanks!到此處才行一步;望諸君莫廢半途。 遵道而行,但到半途須努力;會(huì)心不遠(yuǎn),欲登絕頂莫辭勞。 第39頁/共44
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025銷售代理合同手機(jī)銷售
- 入伙人合同范本
- 勞務(wù)領(lǐng)隊(duì)合同范本
- 修理廠分項(xiàng)承包合同范例
- 保姆合同范例關(guān)于老人死亡
- 醫(yī)療美容診所合同范例
- 全款新房贈(zèng)與合同范例
- 專業(yè)人力外包服務(wù)合同范例
- 業(yè)主和裝修師傅合同范例
- 加盟糧油合同范例
- 2025年度廚師職業(yè)培訓(xùn)學(xué)院合作辦學(xué)合同4篇
- GB/T 19228.1-2024不銹鋼卡壓式管件組件第1部分:卡壓式管件
- 2024年計(jì)算機(jī)二級WPS考試題庫380題(含答案)
- (高清版)DZT 0399-2022 礦山資源儲量管理規(guī)范
- 初一英語英語閱讀理解專項(xiàng)訓(xùn)練15篇
- 廣西貴港市2023年中考物理試題(原卷版)
- 仁愛英語八年級閱讀理解測試題和答案
- DB11∕T 1875-2021 市政工程施工安全操作規(guī)程
- 傳統(tǒng)節(jié)日春節(jié)英文介紹課件
- 水資源論證報(bào)告
- 實(shí)現(xiàn)結(jié)構(gòu)化:初中語文大單元教學(xué)設(shè)計(jì)的核心
評論
0/150
提交評論