下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、B包含A,那么答案應(yīng)該是 B設(shè)連續(xù)型隨機(jī)變量 X 的概率論與數(shù)理統(tǒng)計(jì)試題 一、單項(xiàng)選擇題 (本大題共 10小題,每小題 2分,共 20分)1. 設(shè)A、B為隨機(jī)事件,且 ,則等于(B )至少發(fā)生一個(gè)的事件的對(duì)立事件為一個(gè)也不發(fā)生,那么又因?yàn)锳.B.C. D.2. 設(shè) A與 B滿足 P (A) =, P(B)=,RB A)=,貝U RAU B)= ( A分布函數(shù)是F (x) (- svxvs),則以下描述正確的是(D )(1)=1OO(-O )=0(0)=04.設(shè)隨機(jī)變量X的概率密度為,則常數(shù)a=( C ) 根據(jù)R上的積分等于1可以求出5. 設(shè)任意二維隨機(jī)變量(X, Y)的兩個(gè)邊緣概率密度函數(shù)分別
2、為正確的是( A )根據(jù)聯(lián)合概率密度的性質(zhì),即規(guī)范性A.B.C.D.6. 設(shè)隨機(jī)變量X和Y獨(dú)立同分布,XN( 口 ,(T2),則D(2X+Y)=4D(X)+D(Y)=5 N(2 口 ,2(t2)2+2YN(3 口 ,3 d )N7. 設(shè)隨機(jī)變量X和Y相互獨(dú)立,它們的分布律分別為,f X(x) 和 f Y(y) ,則以下結(jié)論B ) 根 據(jù)方差的性質(zhì),5)21 ,5 d )X0則概率 P(XM Y)= ( C )8. 設(shè) E(X2)=8, D(X)=4,則 E(2 X)= ( B )9. 對(duì)任意兩個(gè)隨機(jī)變量X和Y,由D(X+ Y)= D(X)+ D(Y)可以推斷(B )和 Y 不相關(guān)和Y相互獨(dú)立(
3、XY = D(X)D(Y)和Y的相關(guān)系數(shù)等于-110. 假設(shè)檢驗(yàn)時(shí),若增加樣本容量,則犯兩類錯(cuò)誤的概率()A. 不變B.都減小C.都增大D.一個(gè)增大一個(gè)減小二、填空題 (本大題共 15小題,每小題 2分,共 30分) 請(qǐng)?jiān)诿啃☆}的空格中填上正確答案。錯(cuò)填、不填均無分。11. 某地區(qū)成年人患結(jié)核病的概率為,患高血壓的概率為 . 設(shè)這兩種病的發(fā)生是相互獨(dú)立的, 則該地區(qū)內(nèi)任一成年人同時(shí)患有這兩種病的概率為 .12. 設(shè) P(A)=, P( A- B)= , 則 P( A)=13. 設(shè) P( A)= , P( B)=,若 A 與 B獨(dú)立,則=.14. 獨(dú)立拋擲硬幣 3次,則 3次均出現(xiàn)正面的概率是
4、.15. 若X服從參數(shù)為 入=1的泊松分布,則PX=0 =.16. 設(shè)隨機(jī)變量XN( 0, 1),(x)為其分布函數(shù),已知PX>1=,貝U(1) =17. 已知二維隨機(jī)變量(X Y)的分布律為則 RXw 0, Y=2) =18. 設(shè) XN0,1) , YN(1,1),且 X 與 Y相互獨(dú)立,則 RX+YW 1 =.19. 設(shè)二維隨機(jī)變量(XY)的概率密度為,則當(dāng)y>0時(shí),隨機(jī)變量Y的概率密度fY(y)的表達(dá)式為 .20. 設(shè)隨機(jī)變量 XB(3,,且 Y=X2,貝U P Y=4=.21. 設(shè)隨機(jī)變量X, Y相互獨(dú)立,且 Xx行1), Yx 2( n2),則隨機(jī)變量.22. 設(shè)總體X服
5、從-a,a上的均勻分布(a>0),X1,X2,,Xn為其樣本,且,則E()=.23. 設(shè)總體 X 的分布律為P1-pp其中p為未知參數(shù),且X1, X2,,xn為其樣本,則p的矩估計(jì)=.24. 設(shè)總體XN( 口,疔2)( (T >0) , X1, X2,X3為來自該總體的樣本,若是參數(shù)口無偏估計(jì),則常數(shù)a=.25. 設(shè)總體XN 口 , d2)(T >0) , X1, X2,,Xn為來自該總體的樣本, 其中b2未知.對(duì)假設(shè)檢驗(yàn)問題H0: 口 = 10, Hi: 口工口 o,應(yīng)米用的檢驗(yàn)統(tǒng)計(jì)量為 .三、計(jì)算題(本大題 8分)26. 已知投資一項(xiàng)目的收益率 R是一隨機(jī)變量,其分布為:R1%2%3%4%5%6%P0一位投資者在該項(xiàng)目上投資10萬元,求他預(yù)期獲得多少收入收入的方差是多大四、證明題(本大題 8分)27. 設(shè)Xi,Xz,X是來自總體X的樣本,且E(X)= 口 , D(X)=(T2,證明 是(T2的無偏估計(jì)量五、綜合題(本大題共 2小題,每小題 12分,共 24分)28. 設(shè)隨機(jī)變量X的分布律為X -1 0 1P記 WX2,求:(1) D(X) , D(Y) ; (2) P XY29. 設(shè)二維隨機(jī)變量(X Y的聯(lián)合概率密度為求:(1)常數(shù)A; (2)求X與Y的邊緣概率密度fX(x)與f Y(y) ; (3)判斷X與Y的獨(dú)立性.六
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年銷售經(jīng)理區(qū)域市場(chǎng)拓展聘用合同模板2篇
- 2025年項(xiàng)目工程中介協(xié)議書模板(含設(shè)計(jì)、施工、驗(yàn)收)3篇
- 2025年私人房產(chǎn)買賣合同文本與合同解除條件3篇
- 民政局2025版離婚協(xié)議書婚姻糾紛調(diào)解服務(wù)協(xié)議2篇
- 二零二五版美容院美容院連鎖加盟管理合同4篇
- 墻面裝飾板施工方案
- 窮人續(xù)寫200字6篇
- 2024年中級(jí)經(jīng)濟(jì)師考試題庫(典型題)
- 2025年消防系統(tǒng)智能化改造與安全評(píng)估合同協(xié)議3篇
- 2024年園區(qū)綠化管理制度
- 二零二五年度無人駕駛車輛測(cè)試合同免責(zé)協(xié)議書
- 2025年湖北華中科技大學(xué)招聘實(shí)驗(yàn)技術(shù)人員52名歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 高三日語一輪復(fù)習(xí)助詞「と」的用法課件
- 毛渣采購合同范例
- 2023中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)-注射相關(guān)感染預(yù)防與控制
- 五年級(jí)上冊(cè)小數(shù)遞等式計(jì)算200道及答案
- 2024年廣東高考政治真題考點(diǎn)分布匯 總- 高考政治一輪復(fù)習(xí)
- 燃?xì)夤艿滥甓葯z驗(yàn)報(bào)告
- GB/T 44052-2024液壓傳動(dòng)過濾器性能特性的標(biāo)識(shí)
- FZ/T 81013-2016寵物狗服裝
- JB∕T 14089-2020 袋式除塵器 濾袋運(yùn)行維護(hù)技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論