2021初三數(shù)學模擬試卷(北師大版附)_第1頁
2021初三數(shù)學模擬試卷(北師大版附)_第2頁
2021初三數(shù)學模擬試卷(北師大版附)_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021初三數(shù)學模擬試卷(北師大版附)xxxx初三數(shù)學模擬試卷(北師大版附答案)第一卷(選擇題共45分)一、選擇題(本大題共15個小題,每題3分,共45分.在每題所給的四個選項中,只有一項為哪一項符合題目要求的).1.如果+30m表示向東走30m,那么向西走40m表示為()2.假設實數(shù)a、b滿足a+b=5,a2b+ab2=-10,那么ab的值是()3.圖中幾何體的主視圖是()4.英國曼徹斯特大學的兩位科學家因為成功地從石墨中別離出石墨烯,榮獲了諾貝爾物理學獎.石墨烯目前是世上最薄卻也是最堅硬的納米材料,同時還是導電性最好的材料,其理論厚度僅0.00000000034米,將這個數(shù)用科學記數(shù)法表示

2、為()5.圓錐的底面半徑為6cm,高為8cm,那么這個圓錐的母線長為()6.如以下圖,在平行四邊形紙片上作隨機扎針實驗,針頭扎在陰影區(qū)域內的概率為()7.假期到了,17名女教師去外地培訓,住宿時有2人間和3人間可供租住,每個房間都要住滿,她們有幾種租住方案()8.某景點門票價格:成人票每張70元,兒童票每張35元.小明買20張門票共花了1225元,設其中有x張成人票,y張兒童票.根據(jù)題意,以下方程組正確的選項是()9.如圖,ABC中,AB=AC,∠A=36°,BD是AC邊上的高,那么∠DBC的度數(shù)是()A.18°B.24°C.30&

3、#176;D.36°10.如圖,等腰梯形ABCD的底角∠B=45°,高AE=1,上底AD=1,那么其面積為()11.如圖,數(shù)軸上a,b兩點表示的數(shù)分別為和-1,點a關于點b的對稱點為c,那么點c所表示的數(shù)為()12.如圖,A、B、C是反比例函數(shù)(x、C到直線l的距離之比為311,那么滿足條件的直線l共有()13.在一次"愛心互助"捐款活動中,某班第一小組8名同學捐款的金額(單位:元)如下表所示:這8名同學捐款的平均金額為()14.關于x的不等式組有且只有三個整數(shù)解,那么a的取值范圍是()A.-2≤a-1B.-2&le

4、;a15.如圖,直線l:y=-x-與坐標軸交于A、C兩點,過A、O、C三點作O1,點E為劣弧上一點,連接EC、EA、EO,當點E在劣弧上運動時(不與A、O兩點重合),的值是()第二卷(非選擇題共75分)二、填空題(本大題共6個小題,每題3分,共18分.把答案填在題中的橫線上.)16.分解因式:(a+2)(a-2)+3a=_.17.點P(3,-1)關于y軸的對稱點Q的坐標是(a+b,1-b),那么ab的值為_.18.如圖,兩建筑物的水平距離BC為18m,從A點測得D點的俯角α為30°,測得C點的俯角β為60°.那么建筑物CD的高度為_m(

5、結果不作近似計算).19.三棱柱的三視圖如以下圖,EFG中,EF=8cm,EG=12cm,∠EGF=30°,那么AB的長為_cm.20.如圖,邊長為1的菱形ABCD中,∠DAB=60°.連接對角線AC,以AC為邊作第二個菱形ACC1D1,使∠D1AC=60°,連接AC1,再以AC1為邊作第三個菱形AC1C2D2,使∠D2AC1=60°…,按此規(guī)律所作的第n個菱形的邊長為_.21.如圖,邊長為1的小正方形網格中,O的圓心在格點上,那么∠AED的余弦值是_.

6、三、解答題(本大題共7個小題,共57分.解容許寫出文字說明、證明過程及演算步驟.)22.(本小題總分值7分)(1)化簡(2)解方程:23.(本小題總分值7分)(1)如圖,AB=AE,∠1=∠2,∠C=∠D.求證:ABCAED.(2)如以下圖,在平行四邊形ABCD中,BE=DF.求證:AE=CF.24.(本小題總分值8分)五一期間某校組織七、八年級的同學到某景點郊游,該景點的門票全票票價為15元/人,假設為5099人可以八折購票,100人以上那么可六折購票.參加郊游的七年級同學少于50人、八年級同學少于100人.假設七、八年級分別購

7、票,兩個年級共計應付門票費1575元,假設合在一起購置折扣票,總計應付門票費1080元.(1)請你判斷參加郊游的八年級同學是否也少于50人.(2)求參加郊游的七、八年級同學各為多少人?25.(本小題總分值8分)某市某校對九年級學生進行"綜合素質"評價,評價的結果為A(優(yōu))、B(良好)、C(合格)、D(不合格)四個等級,現(xiàn)從中抽取了假設干名學生的"綜合素質"等級作為樣本進行數(shù)據(jù)處理,并作出如以下圖的統(tǒng)計圖,圖中從左到右的四個長方形的高的比為:14961,評價結果為D等級的有2人,請你答復以下問題:(1)共抽取了多少人?(2)樣本中B等級的頻率是多少?C等級

8、的頻率是多少?(3)如果要繪制扇形統(tǒng)計圖,A、D兩個等級在扇形統(tǒng)計圖中所占的圓心角分別是多少度?(4)該校九年級的畢業(yè)生共300人,假設"綜合素質"等級為A或B的學生才能報考示范性高中,請你計算該校大約有多少名學生可以報考示范性高中?26.(本小題總分值9分)如圖,在ABC中,以AB為直徑的O分別交AC、BC于點D、E,點F在AC的延長線上,且AC=CF,∠CBF=∠CFB.(1)求證:直線BF是O的切線;(2)假設點D,點E分別是弧AB的三等分點,當AD=5時,求BF的長;(3)填空:在(2)的條件下,如果以點C為圓心,r為半徑的圓上總存在

9、不同的兩點到點O的距離為5,那么r的取值范圍為_.27.(本小題總分值9分),如圖二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸交于點C(0,4)與x軸交于點A、B,點B(4,0),拋物線的對稱軸為x=1.直線AD交拋物線于點D(2,m).(1)求二次函數(shù)的解析式并寫出D點坐標;(2)點E是BD的中點,點Q是線段AB上一動點,當QBE和ABD相似時,求點Q的坐標;(3)拋物線與y軸交于點C,直線AD與y軸交于點F,點M為拋物線對稱軸上的動點,點N在x軸上,當四邊形CMNF周長取最小值時,求出滿足條件的點M和點N的坐標.28.(本小題總分值9分)如圖,在O中,直徑AB&

10、perp;CD,垂足為E,點M在OC上,AM的延長線交O于點G,交過C的直線于點F,∠1=∠2,連接CB與DG交于點N.(1)求證:CF是O的切線;(2)求證:ACMDCN;(3)假設點M是CO的中點,O的半徑為4,cos∠BOC=14,求BN的長.參考答案16.(a-1)(a+4)17.-1018.19.620.21.22.(1)解:原式=(2)解:原方程可化為3x+2=8+x,合并同類項得:2x=6,解得:x=3.23.(1)證明:∠1=∠2,∠1+∠EAC=∠2

11、+∠EAC,即∠BAC=∠EAD.在ABC中和AED中,ABCAED(AAS)(2)證明:BE=DF,BE-EF=DE-EF,DE=BF.四邊形ABCD是平行四邊形,AD=BC,ADBC,∠ADE=∠CBF,在ADE和CBF中,ADECBF(SAS),AE=CF.24.解:(1)全票為15元,那么八折票價為12元,六折票價為9元.100x15=1500參加郊游的七、八年級同學的總人數(shù)必定超過100人,由此可判斷參加郊游的八年同學不少于50人.(2)設七、八年級參加郊游的同學分別有x人、y人.由(1)及可得,x依題意

12、可得:解得:答:參加郊游的七、八年級同學分別為45人和75人.25.解:(1)D等級所占比例為:那么共抽取的人數(shù)為:(2)樣本中B等級的頻率為:C等級的頻率為:(3)樣本中A等級在扇形統(tǒng)計圖中所占圓心角度數(shù)為:x360=168(度);D等級在扇形統(tǒng)計圖中所占圓心角度數(shù)為:x360=12(度).(4)可報考示范性高中的總人數(shù):300x=230(名).26.(1)證明:∠CBF=∠CFB,BC=CF.AC=CF,AC=BC,∠ABC=∠BAC.在ABF中,∠ABC+∠CBF+∠BAF+&

13、amp;ang;F=180°,即2(∠ABC+∠CBF)=180°,∠ABC+∠CBF=90°,BF是O的切線;(2)解:連接BD.點D,點E是弧AB的三等分點,AB為直徑,∠ABD=30°,∠ADB=90°,∠A=60°.AD=5,AB=10,27.解:(1)設二次函數(shù)的解析式為:y=ax2+bx+c.點D的坐標為(2,4);(2)作DG垂直于x軸,垂足為G,因為D(2,4),B(4,0),由勾股定理得:BD=E是BD的中

14、點,BE=.(3)如圖,由A(-2,0),D(2,4),可求得直線AD的解析式為:y=x+2,那么點F的坐標為:F(0,2).過點F作關于x軸的對稱點F′,即F′(0,-2),連接CD,再連接DF′交對稱軸于M′,交x軸于N′.由條件可知,點C,D關于對稱軸x=1對稱,DF′=F′N′=FN′,DM′=CM′,CF+FN′+M′N&

15、;prime;+M′C=CF+DF′=四邊形CFNM的周長=CF+FN+NM+MC≥CF+FN′+M′N′+M′C=即四邊形CFNM的最短周長為:此時直線DF′的解析式為:y=3x-2,所以存在點N的坐標為點M的坐標為(1,1)使四邊形CMNF周長取最小值.28.(1)證明:BCO中,BO=CO,∠B=∠BCO,在RtBCE中,∠2+∠B=90°,又∠1=∠2,∠1+∠BCO=90°,即∠FCO=90°,CF是O的切線;(2)證明:AB是O直徑,∠ACB=∠FCO=90°,∠ACB-∠BCO=∠FCO-∠BCO,即&a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論