版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、 統(tǒng)計復習題目一.某公司管理人員為了解某化裝品在一個城市的月銷售量Y單位:箱及該城市中適合使用該化裝品的人數(shù)單位:千人以及他們 人均月收入,之間滿足線性回歸關系其中獨立同分布于.(1)求回歸系數(shù)的最小二乘估計值和誤差方差的估計值,寫出回歸方程并對回歸系數(shù)作解釋;analyze-regression-linear,y to dependent,x1 x2 to indepents ,statistics-confidence intervals,save-unstandardized. Prediction individual-individual.ok CoefficientsaModelU
2、nstandardized CoefficientsStandardized CoefficientstSig.95% Confidence Interval for BBStd. ErrorBetaLower BoundUpper Bound1(Constant).181x1.496.006.934.000.483.509x2.009.001.108.000.007.011a. Dependent Variable: yANOVAbModelSum of SquaresdfMean SquareFSig.1Regression2.000aResidual12Total14a. Predict
3、ors: (Constant), x2, x1b. Dependent Variable: y回歸系數(shù)的最小二乘估計值和誤差方差=4.740. 回歸方程為 回歸系數(shù)解釋:3.453可理解為化裝品的月根本銷售量,當人均月收入固定時,適合使用該化裝品的人數(shù)每提高一個單位,月銷售量Y將增加0.496個單位;當適合使用該化裝品的人數(shù)固定時,人均月收入(2)的值并解釋其意義;ANOVAbModelSum of SquaresdfMean SquareFSig.1Regression2.000aResidual12Total14a. Predictors: (Constant), x2, x1b. Dep
4、endent Variable: yModel SummaryModelRR SquareAdjusted R SquareStd. Error of the Estimate1.999a.999.999a. Predictors: (Constant), x2, x1由于P值=0.000<0.05,所以回歸關系顯著.值=0.999,說明Y及,之間的線性回歸關系是高度顯著的(3)分別求和的置信度為的置信區(qū)間;coefficients的后面局部.和的置信度為的置信區(qū)間分別為0.483,0.509,0.007,0.011(4)對,分別檢驗人數(shù)及收入對銷量Y的影響是否顯著;由于系數(shù),對應的檢驗
5、P值分別為0.000,0.000都小于0.05,所以適合使用該化裝品的人數(shù)和人均月收入 對月銷售量Y的影響是顯著的(5)該公司欲在一個適宜使用該化裝品的人數(shù),人均月收入的新城市中銷售該化裝品,求其銷量的預測值及置信為0.95的置信區(qū)間.Y的預測值及置信度為0.95的置信區(qū)間分別為:135.5741和130.59977,140.54305在數(shù)據(jù)表中直接可以看見二、某班42名男女學生全部參加大學英語四級水平考試,數(shù)據(jù)如下:數(shù)據(jù)表為A2不合格1合格2男生1262女生286問男女生在英語學習水平上有無顯著差異?單擊weight cases-weight cases by-x, ok, analyze-
6、descriptive statistics-crosstabs,(列聯(lián)表分析)sex to rows,score to column, exact-exact, statistics chi-square ,ok.Chi-Square TestsValuedfAsymp. Sig. (2-sided)Exact Sig. (2-sided)Exact Sig. (1-sided)Point ProbabilityPearson Chi-Squarea1.005.010.010Continuity Correctionb1.018Likelihood Ratio1.007.037.010Fis
7、her's Exact Test.010.010Linear-by-Linear Associationc1.006.010.010.010N of Valid Cases42a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 2.67.b. Computed only for a 2x2 tablec. The standardized statistic is 2.745.原假設不顯著,看這個Asymp. Sig. (2-sided)。Pearson Chi-Square
8、卡方檢驗 and Likelihood Ratio似然比 all <0.05 男女生在英語學習水平上差異是顯著的三、將一塊耕地等分為24個小區(qū),今有3種不同的小麥品種(d)和2種不同的肥料(B1,B2),現(xiàn)將各小麥品種及各種肥料進展搭配,對每種搭配都在4個小區(qū)上試驗,測得每個小區(qū)產量的數(shù)據(jù)如表A3所示.1假設所給數(shù)據(jù)服從方差分析模型,建立方差分析表,A及B的交互效應在下是否顯著?Analyze-general linear model-univariate,x to dependent variable,a and b to fixed factor, ok Tests of Betwe
9、en-Subjects EffectsDependent Variable:xSourceType III Sum of SquaresdfMean SquareFSig.Corrected Modela5.0001.000a2.000b1.000a * b2.040Error18Total24Corrected Total23a. R Squared = .857 (Adjusted R Squared = .817)由于交互效應檢驗P值=0.04<0.05,所以小麥(A)及肥料(B)之間的交互效應是顯著的.2假設A及B的交互效應顯著,分別就B的各水平,給出在A的各水平上的均值的置信度
10、為0.95 的置信區(qū)間以及兩兩之差的置信度不小于0.95的Bonferroni同時置信區(qū)間.3.1.Analyze-general linear model-univariate,x to dependent variable,a to fixed factor,post hoc-a to post hoc tests for, bonferroni,options-a to display means for.ok aDependent Variable:xaMeanStd. Error95% Confidence IntervalLower BoundUpper Bound1.6872.6
11、873.687Multiple ComparisonsxBonferroni(I) a(J) aMean Difference (I-J)Std. ErrorSig.95% Confidence IntervalLower BoundUpper Bound12.972.9913*.972.00421.972.9913*.972.01731*.972.0042*.972.017.65Based on observed means. The error term is Mean Square(Error) = 1.889.*. The mean difference is significant
12、at the .05 level.固定肥料的水平,的置信區(qū)間分別為(7.445,10.555),(8.445,11.555),(11.945,15.055);的置信度不小于0.95的Bonferroni同時置信區(qū)間分別為-3.85,1.85,-7.35,-1.65,-6.35,-0.652. Analyze-general linear model-univariate, x to dependent variable,a to fixed factor,post hoc-a to post hoc tests for,bonferroni,options-a to display means
13、 for,.ok aDependent Variable:xaMeanStd. Error95% Confidence IntervalLower BoundUpper Bound1.8662.8663.866Multiple ComparisonsxBonferroni(I) a(J) aMean Difference (I-J)Std. ErrorSig.95% Confidence IntervalLower BoundUpper Bound12.7553*.00021.7553*.00131*.0002*.001Based on observed means. The error te
14、rm is Mean Square(Error) = 3.000.*. The mean difference is significant at the .05 level.固定肥料的水平,的置信區(qū)間分別(8.541,12.459),(10.041,13.959),(17.041,20.959)的置信度不小于0.95的Bonferroni同時置信區(qū)間分別為-5.09,2.09,-12.09,-4.91,-10.59,-3.41四、數(shù)據(jù)表A4給出了我國31個省市自治區(qū)的的經(jīng)濟開展狀況,所考察的八個指標為:地區(qū)生產總值;:居民消費水平;:根本建立投資;職工平均工資; :居民消費價格指數(shù);:商品零
15、售價格指數(shù);:貨物周轉量;:工業(yè)總產值。(1)從樣本相關系數(shù)矩陣出發(fā)做主成分分析,求各主成分的奉獻率及前三個主成分的累計奉獻率;求出前三個主成分的表達式。Analyze-data-reduction-factor將八個成分全部選入variables,extraction-extract-number of factors-8,okTotal Variance ExplainedComponentInitial EigenvaluesExtraction Sums of Squared LoadingsTotal% of VarianceCumulative %Total% of Varianc
16、eCumulative %123.738.7384.4805.4376.1427.060.7458.007.090Extraction Method: Principal Component Analysis.Component MatrixaComponent12345678地區(qū)生產總值.814.556.031居民消費水平.705.006根本建立投資.785.558.085.196.003職工平均工資.604.016.465.264.149居民消費價格指數(shù).599.666.298.001商品零售價格指數(shù).721.552.029.013.000貨物周轉量.761.458
17、.185.017工業(yè)總產值.823.540.020.019.058Undefined error #11401 - Cannot open text file "F:SPSSspsslangenspss.err": No such file or direa. 8 components extracted.各主成分的奉獻率分別為46.761%,29.926%,9.231%,6.006%,5.466%,1.776%,0.745%,0.09%.前三個主成分的累計奉獻率為%.y(2)本相關系數(shù)矩陣出發(fā)做因子分析,提取三個公共因子F1,F(xiàn)2,F(xiàn)3,說明每個公共因子各由哪些指標解釋,
18、并解釋每個公共因子的具體意義。1.求出三個公共因子F1,F(xiàn)2,F(xiàn)3的表達式。Analyze-data-reduction-factor將八個成分全部選入variables,extraction-extract-number of factors-3,descriptives-correlation matrix- coefficients, rotation-method- varimax, scores-save as variables,display factor score coefficient matrix, okComponent Score Coefficient Matrix
19、Component123地區(qū)生產總值.341居民消費水平.380.092根本建立投資.343職工平均工資.258居民消費價格指數(shù).220.910商品零售價格指數(shù).114.157貨物周轉量.468.460工業(yè)總產值.339Undefined error #11401 - Cannot open text file "F:SPSSspsslangenspss.err": No such file or dire Undefined error #11408 - Cannot open text file "F:SPSSspsslangenspss.err":
20、 No such file or dire2.根據(jù)三個公共因子F1,F(xiàn)2,F(xiàn)3的得分,對31個省市自治區(qū)進展分層聚類分析,要求樣本間用歐氏平方距離,類間用類內平均連接法,如果聚為4類,寫出每一類成員。Analyze-classify-hierarchical cluster,F1.F2.F3 to variables,地區(qū) to label cases by, statistics-cluster member ship-single solution-number of cluster-4. method-cluster method-median clustering,save- clus
21、ter member ship-single solution-number of cluster-4.ok 分類在表的最后一列可以讀出。五、表B1給出了煤凈化過程的一組數(shù)據(jù),Y為凈化后煤溶液中所含雜質的重量,這是衡量凈化效率的指標,X1表示輸入凈化過程的溶液所含的煤及雜質的比,X2是溶液的PH值,X3是溶液的流量。假設Y及,和之間滿足線性回歸關系其中獨立同分布于.(1) 求回歸系數(shù)的最小二乘估計值和誤差方差的估計值,寫出回歸方程并對回歸系數(shù)作解釋;analyze-regression-linear,y to dependent,x1 x2 x3to independent ,statisti
22、cs-confidence intervals, save-unstandardized. Prediction individual-individual .ok CoefficientsaModelUnstandardized CoefficientsStandardized CoefficientstSig.95% Confidence Interval for BBStd. ErrorBetaLower BoundUpper Bound1(Constant).000x1.000x2.355.013x3.026.053.001a. Dependent Variable: yANOVAbM
23、odelSum of SquaresdfMean SquareFSig.1Regression3.000aResidual8Total11a. Predictors: (Constant), x3, x2, x1b. Dependent Variable: y回歸系數(shù)的最小二乘估計值和誤差方差y=-110.750*x1+15.583*x2-0.0回歸系數(shù)解釋:397.087可理解為雜質的根本重量,當PH值和溶液流量固定時,輸入凈化過程的溶液所含的煤及雜質的比 每提高一個單位,雜質的重量 Y將減少110.75個單位;當輸入凈化過程的溶液所含的煤及雜質的比和溶液流量固定時,PH值每提高一個單位,雜
24、質的重量Y將增加15.583個單位;當輸入凈化過程的溶液所含的煤及雜質的比和PH值固定時,溶液流量每提高一個單位,雜質的重量Y將減少0.058個單位。(2)的值并解釋其意義;ANOVAbModelSum of SquaresdfMean SquareFSig.1Regression3.000aResidual8Total11a. Predictors: (Constant), x3, x2, x1b. Dependent Variable: yModel SummaryModelRR SquareAdjusted R SquareStd. Error of the Estimate1.948a
25、.899.862a. Predictors: (Constant), x3, x2, x1由于P值=0.000<0.05,所以回歸關系顯著.值=0.899,說明Y及,之間的線性回歸關系是顯著的(3)分別求,和的置信度為的置信區(qū)間;coefficients的后面局部,和的置信度為的置信區(qū)間分別為-144.792,-76.708,4.236,26.931,-0.117,0.001(4)對,分別檢驗, 和對Y的影響是否顯著;由于系數(shù),對應的檢驗P值分別為0.000,0.013都小于0.05,所以和對應的檢驗P值為0.053大于0.05,所以對Y的影響是不顯著的。(5)假設有,的值,求Y的預測值
26、及置信度為0.95的置信區(qū)間.Y的預測值及置信度為0.95的置信區(qū)間分別為:218.64484和166.93687,270.35282在數(shù)據(jù)表中直接可以看見六、考察四種不同催化劑對某一化工產品得率的影響,在四種不同催化劑下分別做了6次實驗,得數(shù)據(jù)如表B2所示.假定各種催化劑下產品的得率服從同方差的正態(tài)分布,試在下,檢驗四種不同催化劑對該化工產品的得率有無顯著影響.要寫出方差分析表。方差分析表:Analyzecompare means -one-way anova,x to dependent list,a to factor ,okANOVAxSum of SquaresdfMean Squa
27、reFSig.Between Groups.0063.002.300Within Groups.03020.001Total.03623由于檢驗P值=0.300>0.05,所以認為四種不同催化劑對該化工產品的得率在水平0.05下無顯著差異。七、為了研制一種治療枯草熱病的藥物,將兩種成分A和B各按三種不同劑量低、中、高混合,將36位自愿受試患者隨機分為9組,每組4人服用各種劑量混合下的藥物,記錄其病情緩解的時間單位:小時數(shù)據(jù)如表B3所示.1假設所給數(shù)據(jù)服從方差分析模型,建立方差分析表,A及B的交互效應在下是否顯著?B.Analyze-general linear model-univari
28、ate,x to dependent variable,a and b to fixed factor, okTests of Between-Subjects EffectsDependent Variable:xSourceType III Sum of SquaresdfMean SquareFSig.Corrected Modela8.0001.000a2.000b2.000a * b4.000Error27.060Total36Corrected Total35a. R Squared = .996 (Adjusted R Squared = .994)交互效應檢驗P值=0.000&
29、lt;0.05,所以成分 (A)及成分(B)之間的交互效應是顯著的2假設A及B 的交互效應顯著,分別就A的各水平,給出在B的各水平上的均值的置信度為0.95 的置信區(qū)間以及兩兩之差的置信度不小于0.95的Bonferroni同時置信區(qū)間.B.Analyze-general linear model-univariate,x to dependent variable,a to fixed factor,post hoc-a to post hoc tests for, bonferroni,options-a to display means for.okbDependent Variable
30、:xbMeanStd. Error95% Confidence IntervalLower BoundUpper Bound1.1102.1103.110Multiple ComparisonsxBonferroni(I) b(J) bMean Difference (I-J)Std. ErrorSig.95% Confidence IntervalLower BoundUpper Bound12*.15546.0003*.15546.00021*.15546.0003.0250.15546.481031*.15546.0002.15546.4310Based on observed mean
31、s. The error term is Mean Square(Error) = .048.*. The mean difference is significant at the .05 level.固定成分(A)的水平,的置信度為0.95的置信區(qū)間分別為(2.226,2.724),(4.351,4.849),(4.326,4.824);的置信度不小于0.95的Bonferroni同時置信區(qū)間分別為-2.581,-1.669,-2.556,-1.644,-0.431,0.481B.Analyze-general linear model-univariate,x to dependent
32、variable,a to fixed factor,post hoc-a to post hoc tests for, bonferroni,options-a to display means for.okbDependent Variable:xbMeanStd. Error95% Confidence IntervalLower BoundUpper Bound1.1272.1273.127Multiple ComparisonsxBonferroni(I) b(J) bMean Difference (I-J)Std. ErrorSig.95% Confidence Interval
33、Lower BoundUpper Bound12*.18028.0003*.18028.00021*.18028.0003.18028.888.328831*.18028.0002.2000.18028.888.7288Based on observed means. The error term is Mean Square(Error) = .065.*. The mean difference is significant at the .05 level.固定成分(A)的水平,的置信度為0.95的置信區(qū)間分別為(5.162,5.738),(8.637,9.213),(8.837,9.4
34、13);的置信度不小于0.95的Bonferroni同時置信區(qū)間分別為-4.0038,-2.9462,-4.2038,-3.1462,-0.7288,0.3288B.Analyze-general linear model-univariate,x to dependent variable,a to fixed factor,post hoc-a to post hoc tests for, bonferroni,options-a to display means for.okbDependent Variable:xbMeanStd. Error95% Confidence Interv
35、alLower BoundUpper Bound1.1302.1303.130Multiple ComparisonsxBonferroni(I) b(J) bMean Difference (I-J)Std. ErrorSig.95% Confidence IntervalLower BoundUpper Bound12*.18333.0003*.18333.00021*.18333.0003*.18333.00031*.18333.0002*.18333.000Based on observed means. The error term is Mean Square(Error) = .
36、067.*. The mean difference is significant at the .05 level.固定成分(A)的水平,的置信度為0.95的置信區(qū)間分別為(5.682,6.268),(9.982,10.568),(12.957,13.543);的置信度不小于0.95的Bonferroni同時置信區(qū)間分別為-4.8378,-3.7622,-7.8128,-6.7372,-3.5128,-2.4372. 八、表B4給出了1991年我國30個省、區(qū)、市城鎮(zhèn)居民的月平均消費數(shù)據(jù),所考察的八個指標如下單位均為元/人:人均糧食支出;:人均副食支出;:人均煙酒茶支出;人均其他副食支出;
37、:人均衣著商品支出;:人均日用品支出;:人均燃料支出;:人均非商品支出1從出發(fā)做主成分分析,求各主成分的奉獻率及前兩個主成分的累計奉獻率; Analyze-data-reduction-factor將八個成分全部選入variables,extraction-extract-number of factors-2,okTotal Variance ExplainedComponentInitial EigenvaluesExtraction Sums of Squared LoadingsTotal% of VarianceCumulative %Total% of VarianceCumula
38、tive %123.9204.7065.4986.2307.1318.051.643Extraction Method: Principal Component Analysis.第一,第二,第八主成分的奉獻率分別為:38.704%,29.59%,11.5%,8.824%,6.231%,2.874%,1.635%,0.635%. 前兩個主成分的累計奉獻率68.294%.(2)求出前兩個主成分并解釋其意義.Component MatrixaComponent12x1.439x2.914x3.731x4.447.828x5.038.885x6.867.207x7.558x8.896Undefined error #11401 - Cannot open text file "C:Program FilesSPSSIncSPSS16langenspss.err": Na. 2 components extracted.yx1+0.914x2-0.033x3+0.447x4+0.038x5+0.867x6+0.55896x8y2=-0.371x1-0.058x2+0.731x3+0.828x4+0.885x5+0.207x6-0.401x7-0.134x8反映了居民的綜合支出,的值越大,說明人均綜合支出越大。反映了必需品消費和奢侈品消費比照,的絕對值越大,說明必需
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度跨境電商平臺區(qū)域代理合同范本3篇
- 2024年生物醫(yī)藥企業(yè)股權收購合同匯編3篇
- 淘寶找建筑課程設計
- 專題03 閱讀理解之推理判斷題(練習)(解析版)
- 煉鋼廠部門崗位職責說明書
- 機電工程施工組織設計
- (一)高標準農田施工方案
- 油條配方課程設計
- 糖果罐子手工課程設計
- 算法課程設計總結
- 無菌技術操作評分標準
- 《社群運營》全套教學課件
- 兒童版畫(版畫基礎)
- 中央2024年國家國防科工局重大專項工程中心面向應屆生招聘筆試歷年典型考題及考點附答案解析
- 車輛提檔委托書樣本
- 充值消費返利合同范本
- 宜賓市敘州區(qū)2022-2023學年七年級上學期期末數(shù)學試題
- 國開政治學原理2024春期末綜合練習題(附答案)
- GB/T 18488-2024電動汽車用驅動電機系統(tǒng)
- 裝配式混凝土建筑預制疊合板、疊合梁識圖
- 醫(yī)療科研數(shù)據(jù)管理制度
評論
0/150
提交評論