![高考一輪復(fù)習(xí)函數(shù)的應(yīng)用_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/5/88be3e75-84ba-40a4-8da8-99867947ba53/88be3e75-84ba-40a4-8da8-99867947ba531.gif)
![高考一輪復(fù)習(xí)函數(shù)的應(yīng)用_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/5/88be3e75-84ba-40a4-8da8-99867947ba53/88be3e75-84ba-40a4-8da8-99867947ba532.gif)
![高考一輪復(fù)習(xí)函數(shù)的應(yīng)用_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/5/88be3e75-84ba-40a4-8da8-99867947ba53/88be3e75-84ba-40a4-8da8-99867947ba533.gif)
![高考一輪復(fù)習(xí)函數(shù)的應(yīng)用_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/5/88be3e75-84ba-40a4-8da8-99867947ba53/88be3e75-84ba-40a4-8da8-99867947ba534.gif)
![高考一輪復(fù)習(xí)函數(shù)的應(yīng)用_第5頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/5/88be3e75-84ba-40a4-8da8-99867947ba53/88be3e75-84ba-40a4-8da8-99867947ba535.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、第9講函數(shù)的應(yīng)用【2015年高考會這樣考】1考查二次函數(shù)模型的建立及最值問題2考查分段函數(shù)模型的建立及最值問題3考查指數(shù)、對數(shù)、冪函數(shù)、“對勾”型函數(shù)模型的建立及最值問題【復(fù)習(xí)指導(dǎo)】函數(shù)模型的實(shí)際應(yīng)用問題,主要抓好常見函數(shù)模型的訓(xùn)練,解答應(yīng)用問題的重點(diǎn)在信息整理與建模上,建模后利用函數(shù)知識分析解決問題基礎(chǔ)梳理1常見的函數(shù)模型及性質(zhì)(1)幾類函數(shù)模型一次函數(shù)模型:ykxb(k0)二次函數(shù)模型:yax2bxc(a0)指數(shù)函數(shù)型模型:yabxc(b0,b1)對數(shù)函數(shù)型模型:ymlogaxn(a0,a1)冪函數(shù)型模型:yaxnb.(2)三種函數(shù)模型的性質(zhì)函數(shù)性質(zhì)yax(a>1)ylogax(a&
2、gt;1)yxn(n>0)在(0,)上的增減性單調(diào)遞增單調(diào)遞增單調(diào)遞增增長速度越來越快越來越慢相對平穩(wěn)圖象的變化隨x的增大逐漸表現(xiàn)為與y軸平行隨x的增大逐漸表現(xiàn)為與x軸平行隨n值變化而各有不同值的比較存在一個x0,當(dāng)xx0時,有l(wèi)ogaxxnax 一個防范特別關(guān)注實(shí)際問題的自變量的取值范圍,合理確定函數(shù)的定義域 四個步驟(1)審題:深刻理解題意,分清條件和結(jié)論,理順其中的數(shù)量關(guān)系,把握其中的數(shù)學(xué)本質(zhì);(2)建模:由題設(shè)中的數(shù)量關(guān)系,建立相應(yīng)的數(shù)學(xué)模型,將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題;(3)解模:用數(shù)學(xué)知識和方法解決轉(zhuǎn)化出的數(shù)學(xué)問題;(4)還原:回到題目本身,檢驗(yàn)結(jié)果的實(shí)際意義,給出結(jié)論雙基自測
3、1(人教A版教材習(xí)題改編)從1999年11月1日起,全國儲蓄存款征收利息稅,利息稅的稅率為20%,由各銀行儲蓄點(diǎn)代扣代收,某人2011年6月1日存入若干萬元人民幣,年利率為2%,到2012年6月1日取款時被銀行扣除利息稅138.64元,則該存款人的本金介于()A34萬元 B45萬元 C56萬元 D23萬元解析設(shè)存入的本金為x,則x·2%·20%138.64,x34 660.答案A2(2012·新鄉(xiāng)月考)某產(chǎn)品的總成本y(萬元)與產(chǎn)量x(臺)之間的函數(shù)關(guān)系是y3 00020x0.1x2(0x240,xN*),若每臺產(chǎn)品的售價為25萬元,則生產(chǎn)者不虧本時(銷售收入不小
4、于總成本)的最低產(chǎn)量是()A100臺 B120臺 C150臺 D180臺解析設(shè)利潤為f(x)(萬元),則f(x)25x(3 00020x0.1x2)0.1x25x3 0000,x150.答案C3有一批材料可以圍成200米長的圍墻,現(xiàn)用此材料在一邊靠墻的地方圍成一塊矩形場地(如圖),且內(nèi)部用此材料隔成三個面積相等的矩形,則圍成的矩形場地的最大面積為()A1 000米2 B2 000米2C2 500米2 D3 000米2解析設(shè)三個面積相等的矩形的長、寬分別為x米、y米,如圖,則4x3y200,又矩形場地的面積S3xy3x·x(2004x)4(x25)22 500,當(dāng)x25時,Smax2
5、500.答案C4(2011·湖北)里氏震級M的計(jì)算公式為:Mlg Alg A0,其中A是測震儀記錄的地震曲線的最大振幅,A0是相應(yīng)的標(biāo)準(zhǔn)地震的振幅假設(shè)在一次地震中,測震儀記錄的最大振幅是1 000,此時標(biāo)準(zhǔn)地震的振幅為0.001,則此次地震的震級為_級;9級地震的最大振幅是5級地震最大振幅的_倍解析由lg 1 000lg 0.0016,得此次地震的震級為6級因?yàn)闃?biāo)準(zhǔn)地震的振幅為0.001,設(shè)9級地震最大振幅為A9,則lg A9lg 0.0019解得A9106,同理5級地震最大振幅A5102,所以9級地震的最大振幅是5級地震的最大振幅的10 000倍答案610 0005(2012
6、83;東三校聯(lián)考)為了保證信息安全,傳輸必須使用加密方式,有一種方式其加密、解密原理如下:明文密文密文明文已知加密為yax2(x為明文,y為密文),如果明文“3”通過加密后得到密文為“6”,再發(fā)送,接受方通過解密得到明文“3”,若接受方接到密文為“14”,則原發(fā)的明文是_解析依題意yax2中,當(dāng)x3時,y6,故6a32,解得a2.所以加密為y2x2,因此,當(dāng)y14時,由142x2,解得x4.答案4考向一一次函數(shù)、二次函數(shù)函數(shù)模型的應(yīng)用【例1】(2011·武漢調(diào)研)在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為:Mf(x)f(x1)f(x)某公司每月生產(chǎn)x臺某種產(chǎn)品的收入為R(x)
7、元,成本為C(x)元,且R(x)3 000x20x2,C(x)500x4 000(xN*)現(xiàn)已知該公司每月生產(chǎn)該產(chǎn)品不超過100臺(1)求利潤函數(shù)P(x)以及它的邊際利潤函數(shù)MP(x);(2)求利潤函數(shù)的最大值與邊際利潤函數(shù)的最大值之差審題視點(diǎn) 列出函數(shù)解析式,根據(jù)函數(shù)性質(zhì)求最值解(1)由題意,得x1,100,且xN*.P(x)R(x)C(x)(3 000x20x2)(500x4 000)20x22 500x4 000,MP(x)P(x1)P(x)20(x1)22 500(x1)4 000(20x22 500x4 000)2 48040x.(2)P(x)20274 125,當(dāng)x62或x63時,
8、P(x)取得最大值74 120元;因?yàn)镸P(x)2 48040x是減函數(shù),所以當(dāng)x1時,MP(x)取得最大值2 440元故利潤函數(shù)的最大值與邊際利潤函數(shù)的最大值之差為71 680元. 二次函數(shù)是我們比較熟悉的基本函數(shù),建立二次函數(shù)模型可以求出函數(shù)的最值,解決實(shí)際中的最優(yōu)化問題,值得注意的是:一定要注意自變量的取值范圍,根據(jù)圖象的對稱軸與定義域在數(shù)軸上表示的區(qū)間之間的位置關(guān)系討論求解【訓(xùn)練1】 經(jīng)市場調(diào)查,某種商品在過去50天的銷售量和價格均為銷售時間t(天)的函數(shù),且銷售量近似地滿足f(t)2t200(1t50,tN)前30天價格為g(t)t30(1t30,tN),后20天價格為g(t)45(
9、31t50,tN)(1)寫出該種商品的日銷售額S與時間t的函數(shù)關(guān)系;(2)求日銷售額S的最大值解(1)根據(jù)題意,得S(2)當(dāng)1t30,tN時,S(t20)26 400,當(dāng)t20時,S的最大值為6 400;當(dāng)31t50,tN時,S90t9 000為減函數(shù),當(dāng)t31時,S的最大值為6 210.6 2106 400,當(dāng)t20時,日銷售額S有最大值6 400.考向二指數(shù)函數(shù)模型的應(yīng)用【例2】某醫(yī)藥研究所開發(fā)的一種新藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時間t(小時)之間近似滿足如圖所示的曲線(1)寫出第一次服藥后y與t之間的函數(shù)關(guān)系式y(tǒng)f(t);(2)據(jù)進(jìn)一步測
10、定:每毫升血液中含藥量不少于0.25微克時,治療有效求服藥一次后治療有效的時間是多長?審題視點(diǎn) 根據(jù)圖象用待定系數(shù)法求出函數(shù)解析式,再分段求出時間長解(1)設(shè)y當(dāng)t1時,由y4得k4,由1a4得a3.則y(2)由y0.25得或解得t5,因此服藥一次后治療有效的時間是5小時 可根據(jù)圖象利用待定系數(shù)法確定函數(shù)解析式,然后把實(shí)際問題轉(zhuǎn)化為解不等式問題進(jìn)行求解【訓(xùn)練2】 某城市現(xiàn)有人口總數(shù)為100萬人,如果年自然增長率為1.2%,試解答以下問題:(1)寫出該城市人口總數(shù)y(萬人)與年份x(年)的函數(shù)關(guān)系式;(2)計(jì)算10年以后該城市人口總數(shù)(精確到0.1萬人);(3)計(jì)算大約多少年以后,該城市人口將達(dá)
11、到120萬人(精確到1年);(4)如果20年后該城市人口總數(shù)不超過120萬人,年自然增長率應(yīng)該控制在多少?(參考數(shù)據(jù):1.01291.113,1.012101.127,lg 1.20.079,lg 20.3010,lg 1.0120.005,lg 1.0090.003 9)解(1)1年后該城市人口總數(shù)為y100100×1.2%100×(11.2%)2年后該城市人口總數(shù)為y100×(11.2%)100×(11.2%)×1.2%100×(11.2%)2.3年后該城市人口總數(shù)為y100×(11.2%)2100×(11.2
12、%)2×1.2%100×(11.2%)3.x年后該城市人口總數(shù)為y100×(11.2%)x.(2)10年后,人口總數(shù)為100×(11.2%)10112.7(萬人)(3)設(shè)x年后該城市人口將達(dá)到120萬人,即100×(11.2%)x120,xlog1.012log1.0121.2016(年)(4)由100×(1x%)20120,得(1x%)201.2,兩邊取對數(shù)得20lg(1x%)lg 1.20.079,所以lg(1x%)0.003 95,所以1x%1.009,得x0.9,即年自然增長率應(yīng)該控制在0.9%.考向三函數(shù)yx模型的應(yīng)用【例3
13、】(2010·湖北)為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)(0x10),若不建隔熱層,每年能源消耗費(fèi)用為8萬元,設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和(1)求k的值及f(x)的表達(dá)式;(2)隔熱層修建多厚時,總費(fèi)用f(x)達(dá)到最小,并求最小值審題視點(diǎn) 用基本不等式求最值,注意等號成立的條件解(1)由已知條件C(0)8則k40,因此f(x)6x20C(x)6x (0x10)(2)f(x
14、)6x10102 1070(萬元),當(dāng)且僅當(dāng)6x10即x5時等號成立所以當(dāng)隔熱層為5 cm時,總費(fèi)用f(x)達(dá)到最小值,最小值為70萬元 求函數(shù)解析式同時要注意確定函數(shù)的定義域,對于yx(a>0)類型的函數(shù)最值問題,特別要注意定義域問題,可考慮用均值不等式求最值,否則要考慮使用函數(shù)的單調(diào)性【訓(xùn)練3】 某村計(jì)劃建造一個室內(nèi)面積為800 m2的矩形蔬菜溫室,在溫室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1 m寬的通道,沿前側(cè)內(nèi)墻保留3 m寬的空地,當(dāng)矩形溫室的邊長各為多少時,蔬菜的種植面積最大?最大面積是多少?解設(shè)溫室的左側(cè)邊長為x m,則后側(cè)邊長為m.蔬菜種植面積y(x4)8082(4<x&
15、lt;400)x2 80,y8082×80648(m)2.當(dāng)且僅當(dāng)x,即x40,此時20 m,y最大648(m2)當(dāng)矩形溫室的左側(cè)邊長為40 m,后側(cè)邊長為20 m時,蔬菜的種植面積最大,為648 m2.規(guī)范解答5應(yīng)用題中的函數(shù)建模問題(【問題研究】 解決應(yīng)用問題的關(guān)鍵是建立恰當(dāng)?shù)暮瘮?shù)模型,因此,首先要熟悉和掌握幾類常用的函數(shù)模型.求解中容易在以下兩個地方出現(xiàn)失誤:,(1)列函數(shù)關(guān)系式時,會出現(xiàn)由于理不清楚各個量之間的關(guān)系,而導(dǎo)致列出錯誤的關(guān)系式.這一點(diǎn)在求解應(yīng)用題時是常出現(xiàn)的錯誤;,(2)列出解析式,在求最優(yōu)解的過程中,由于方法使用不當(dāng)而出現(xiàn)求解上的錯誤.,【解決方案】 (1)閱讀
16、理解,審清題意.讀題要做到逐字逐句,讀懂題中的文字?jǐn)⑹?,理解敘述部分所反映的?shí)際背景,在此基礎(chǔ)上,分析出已知是什么,求什么,從中提煉出相應(yīng)的數(shù)學(xué)問題.,(2)根據(jù)所給模型,列出函數(shù)關(guān)系式.根據(jù)已知條件和數(shù)量關(guān)系,建立函數(shù)關(guān)系式,在此基礎(chǔ)上將實(shí)際問題轉(zhuǎn)化為一個函數(shù)問題.,(3)利用數(shù)學(xué)的方法將得到的常規(guī)函數(shù)問題(即數(shù)學(xué)模型)予以解答,并求得結(jié)果.,(4)將所得結(jié)果代入原問題中,對具體問題進(jìn)行解答.)【示例】(本題滿分12分)(2011·湖北)提高過江大橋的車輛通行能力可改善整個城市的交通狀況在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù)當(dāng)橋上的
17、車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時研究表明:當(dāng)20x200時,車流速度v是車流密度x的一次函數(shù)(1)當(dāng)0x200時,求函數(shù)v(x)的表達(dá)式;(2)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時)f(x)x·v(x)可以達(dá)到最大,并求出最大值(精確到1輛/小時) 首先求函數(shù)v(x)為分段函數(shù),然后利用一元二次函數(shù)配方法或基本不等式求解解答示范 (1)由題意:當(dāng)0x20時,v(x)60;當(dāng)20x200時,設(shè)v(x)axb,再由已知,得解得故函數(shù)v(x)的表達(dá)式為v(x)(4分)(2)依題意并由(1)可得f(x)(6分)當(dāng)0x20時,f(x)為增函數(shù),故當(dāng)x20時,其最大值為60×201 200;(7分)當(dāng)20x200時,f(x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 礦產(chǎn)品供貨協(xié)議合同
- 有車輛的離婚協(xié)議書
- 北京商品房認(rèn)購協(xié)議書
- 農(nóng)業(yè)種植技術(shù)指導(dǎo)書
- 純技術(shù)入股合作的協(xié)議書
- 湖南離婚協(xié)議書年
- 三農(nóng)村土地整治與開發(fā)方案
- 托管班合作協(xié)議書
- 股權(quán)融資合同書
- 標(biāo)準(zhǔn)汽車租賃合同協(xié)議
- (完整版)中國古代書法史課件
- 人教版英語八年級上冊單詞默寫表
- 地質(zhì)調(diào)查表 資料
- SRE Google運(yùn)維解密(中文版)
- 寫作指導(dǎo)議論文的論證方法
- DCS系統(tǒng)安裝及調(diào)試方案
- 綜合性學(xué)習(xí)公開課《我的語文生活》一等獎?wù)n件
- IBM:中建八局ERP解決方案
- 高考語文復(fù)習(xí)高中語文文言文注釋集萃
- 初中歷史 教材分析與教學(xué)策略 課件
- (完整word版)手卡模板
評論
0/150
提交評論