湖南省湘潭市2019-2020學年高二上學期期末考試數(shù)學(理)試題Word版含解析_第1頁
湖南省湘潭市2019-2020學年高二上學期期末考試數(shù)學(理)試題Word版含解析_第2頁
湖南省湘潭市2019-2020學年高二上學期期末考試數(shù)學(理)試題Word版含解析_第3頁
湖南省湘潭市2019-2020學年高二上學期期末考試數(shù)學(理)試題Word版含解析_第4頁
湖南省湘潭市2019-2020學年高二上學期期末考試數(shù)學(理)試題Word版含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、湖南省湘潭市2019-2020學年度第一學期期末高二理科數(shù)學試卷一、選擇題(本大題共12小題,共60.0分)1 .命題刈與與£ (口.十 °°),北工福2,則中是()A.北qW(0, + 8),好>與一2B.祗 E(O, + s),,三k2C.三%£(0, 4 8), x>x2D. VxE(0, + 8), jt2>x-2【答案】D【解析】【分析】根據(jù)特稱命題的否定是全稱命題,且否定結(jié)論求解【詳解】命題 口曰,o£(。,+ 8),瑤£與一2,故-1P :祗 E(o,+ s), x?>x-2,故選D.【點睛】本題

2、考查了含有量詞的命題的否定,含有量詞的命題的否定:換量詞,否結(jié)論.222 .橢圓上+2二1的焦距為()6 11A.B. 'C.D. .【答案】A【解析】【分析】結(jié)合橢圓的性質(zhì)和公式公=X + d,計算焦距,即可.【詳解】結(jié)合橢圓的性質(zhì)可知,公=11,叢=6,故1 = 一/ = 11-6 = 5,故焦距為24,故選A.【點睛】考查了橢圓的基本性質(zhì),關(guān)鍵抓住於二M + d,計算,即可,難度較容易.3 . “x>2” 是 “,:>1” 的()B.必要不充分條件D.既不充分也不必要條件A.充分不必要條件C.充要條件【答案】A【解析】【分析】結(jié)合充分條件和必要條件的判定 ,即可.【詳

3、解】結(jié)合題意可知 方 > 2可以推出1 > 1 ,但是X > 1并不能保證>2,故為充分不必要條件故選A.【點睛】考查了充分條件和必要條件的判定,難度較容易.4 .已知a, b, c分別為也/HC內(nèi)角A, B, C的對邊,az + c2-h2 = ac,則角H =()271 A.花 B.3CC.67T D.6【解析】【分析】利用余弦定理,計算角B的大小,即可.【詳解】利用余弦定理,。:-a2 + c2-b2 ac2ac2ac-,故B =-,故選B. 23【點睛】考查了余弦定理,關(guān)鍵利用余弦定理公式,計算角的大小,即可,難度較容易.5 .若c<d<0,則一定有

4、(A.a b C.【解析】【分析】 直接利用不等式的基本性質(zhì)的應用求出結(jié)果.【詳解】解:由于。<4<0, 所以:叫史1 1進一步求出:°< ?。河捎冢嚎?Ab>。,故選:C.【點睛】本題考查的知識要點:不等式的基本性質(zhì)的應用,主要考查學生的運算能力和轉(zhuǎn)化 能力,屬于基礎(chǔ)題型.6 .已知等比數(shù)列冊)的公比為q, 口4 = %白7則0 =()A.B. 2C. 1D. 1【解析】【分析】um利用等比數(shù)列的性質(zhì)滿足 9小=_,代入,計算,即可.【詳解】結(jié)合等比數(shù)列的性質(zhì)可知«711=.=或解得',故選C.0m【點睛】考查了等比數(shù)列的性質(zhì) ,關(guān)鍵利用q

5、二三,代入,計算,即可,難度較容易.7 .已知元”則M 4的最小值為1)1 A.2B. 1C.利用基本不等式滿足十人之酒,代入,計算最小值,即可.【詳解】利用基本不等式滿足iQz廣一也故最小值為篦當且僅當“看即工邛時取到最小值.故選D.【點睛】考查了基本不等式計算最值問題,關(guān)鍵利用以+b之2糜,計算,即可,難度較容易8.已知點 A(0,1,0) , B(1,0 , 1),C(2,1,1),點 P(x,0 , z),若 PAL平面 ABC 則點坐標為()A. (1,0 , -2)B. (1,0,2)C. ( -1,0,2)D. (2,0 , 1)利用易,端,PAAC? PA AS = PAAC

6、n 0.即可得出.【詳解】標=(_i, _i, -1),前二(2, 0. 1),PA = (-xt 1, -z)PAAB PAAC PA AS = PA-AC =0rx- 1 + 2 = 0 解珥t = 1 -Zx-z = Q,斛倚 z= -2,P(1,0,2).故選:C .【點睛】本題考查向量數(shù)量積與垂直的關(guān)系,考查運算能力,屬于基礎(chǔ)題zX-y > 09 .已知x, y滿足約束條件+,則£ = 2#十F的最大值為()I >0A. 3B. 4C. D.【答案】B【解析】【分析】結(jié)合不等式組,繪制可行域,計算最值,即可?!驹斀狻拷Y(jié)合不等式組,繪制可行域,如圖當目標函數(shù)平移到

7、 B乙S,z取到最大值,故工=4,故選B?!军c睛】考查了線性規(guī)劃問題,關(guān)鍵找出目標函數(shù)在哪個點取到最大值,即可,難度中等。10 .在 中,BAC = 30a , BC=2,盤C =,則力H =()A. 4B. 2C. 4 或 2D. 2小【答案】C【解析】【分析】利用余弦定理,建立等式,解方程,計算長度,即可。j d2_【詳解】利用余弦定理可知 2 J. .J=匕門5?0",而=藝小用匕=2 ,代入可得= 4或2 ,故選C?!军c睛】考查了余弦定理,關(guān)鍵利用余弦定理,建立方程,計算,即可,難度中等。11 .如圖,在三棱柱八力/£中,八/1"底面ABC/& =

8、 :,皿 = /1。=8匚=2,貝與平面八所成角的大小為()aA.B.:C.D.【答案】A【解析】【分析】建立空間坐標系,計算 丹4坐標,計算平面 力用儲的法向量,運用空間向量數(shù)量積公式,計算 夾角即可。【詳解】取AB的中點D,連接CD以AD為x軸,以CD為y軸,以日為為z軸,建立空間直 角坐標系,可得可1,0,4i(LQ周,故磯=(1乩3) 一 (14。尸總陰,而B-lo.3)G。祗3),設(shè)平面的法向量為而=g力0,根據(jù) 擊盤4q = q而京解得前=0-力2),一一 m 編 1 . 丁同11 2故/Ml與平面0所成角的大小為30°,故選A【點睛】考查了空間向量數(shù)量積坐標運算,關(guān)鍵構(gòu)

9、造空間直角坐標系,難度偏難。12.已知中心在坐標原點的橢圓 C與雙曲線S有公共焦點,且左,右焦點分別為0, &, 7與G 在第一象限的交點為P, 2七也是以PF為底邊的等腰三角形,若 伊片1 = 1。,。與&的離心 率分別為%,與,則% +氣的取值范圍是()1+7255A.:,、;B. :C. + «D.【答案】B【解析】【分析】結(jié)合橢圓性質(zhì)和雙曲線性質(zhì),用c表示2勺+電,結(jié)合c的范圍,計算,即可?!驹斀狻拷Y(jié)合題意可知 儼&| = 2匚,鳥&| = 2c,故對于橢圓而言 a = 1Q+",解得" = 5+。,此時 C C c = 一

10、=.,;.-,'c c5對于雙曲線而言,1。-2匕=24,解得,滿足白 1,0 已1 1,解得5,故a 5 - c22c c 212% + % = h - = 1-. ; - , ;:,-1, cc521令)="貝丘三十 % =百7彳+二y,其中1亡 2,可知y = r占與尸=在口2單調(diào)遞減, 工十r 15 可知當,趨于1的時候,組十%趨于無窮大,當t=2時,2ee2=-,故2j+%e& + 8),故選區(qū)【點睛】考查了圓錐曲線的性質(zhì),考查了利用函數(shù)單調(diào)性判定函數(shù)的范圍,難度偏難。二、填空題(本大題共 4小題,共20.0分)13 .已知向量;=(一呢,6), ;=(Lx

11、, -1),且;=*,則x的值為.【答案】8【解析】【分析】利用空間向量數(shù)量積坐標運算,計算 x的值,即可。【詳解】a b = (-325) (1,蒼-1) = -3 + 2x-5 = S,解得 x = 8?!军c睛】考查了空間向量數(shù)量積坐標運算,結(jié)合坐標運算,建立方程,計算,即可,屬于基礎(chǔ)題。14 .設(shè)工是等差數(shù)列 0的前n項和,若%+ %口 = 1。,則與3=.【答案】65【解析】【分析】利用等差數(shù)列前n項和公式和等差數(shù)列的性質(zhì),計算,即可。x 13 i n x 1【詳解】/ + 口1口 = % += 1。,故 $13二-=651322【點睛】考查了等差數(shù)列的性質(zhì),考查了等差數(shù)列求和公式,難

12、度較容易。2215 .若拋物線V = 2PMp > 口)的焦點恰好是雙曲線 -<- = 1的右焦點,則實數(shù)16 - m m + 2 0為.【答案】12【解析】【分析】利用雙曲線的性質(zhì) =白2 +反和拋物線焦點坐標計算,建立方程,計算,即可【詳解】【點睛】考查了雙曲線的性質(zhì),考查了拋物線的性質(zhì),關(guān)鍵利用焦點相同,建立方程,即可, 中等難度。16 .一批救災物資隨51輛汽車從某市以此m網(wǎng)的速度勻速直達災區(qū),已知兩地公路線長為了安全起見,兩輛汽車的間距不得小于那么這批物資全部到達災區(qū),最少需要oUUh.【答案】10【解析】p的值400 km【分析】 用速度v表示時間,結(jié)合基本不等式,計算

13、最小值,即可。vV小時,最后一輛車走完全程共需16【詳解】當最后一輛車子出發(fā),第一輛車子走了° 麗400400 v'400 v=10,故最小值為10小時v 16要一小時,所以一共需要 一小時,結(jié)合基本不等式,計算最值,可得 vv16- + >2 v 16口 +占之2我,計算最小值,即可,400【點睛】考查了基本不等式計算函數(shù)最值問題,關(guān)鍵利用 難度中等。三、解答題(本大題共 6小題,共70.0分)17 .設(shè)命題p: VxeR, * + 2ox + r>0,命題q: 4H2vL若命題pag為假命題,為真命題,求實數(shù)a的取值范圍.【答案】或;EaC1【解析】【分析】求

14、出命題p, q為真命題的等價條件,結(jié)合復合命題真假關(guān)系進行求解即可.【詳解】解:若:Vxefi, x2 + 2ax + a>t),則判別式 A =4a2-a<0,得0<口<1,由 4q± < 1得 c/ < :,得 一 C ” 若命題p Aq為假命題,pvq為真命題,則p, q 一個為真命題,一個為假命題,(0 <Q < 11若p真q假,則得*<1, 22產(chǎn)之1或口 £01若 p假 q 真,則 1 _!<<!得 r 5cBM0,22綜上或g3&< 1,即實數(shù)a的取值范圍是【點睛】本題主要考查復合

15、命題真假關(guān)系的應用,求出命題為真命題的等價條件是解決本題 的關(guān)鍵注意要進行分類討論.18.已知a, b, c分別為內(nèi)角A, B, C的對邊,且絲出白-/尿口以=。.(I)求角A(幻若口 = im, h = w,求tie。的面積.7T【答案】(1) -; (2)距小【解析】【分析】(1)由正弦定理可得sinAsinB = SsinBcosA ,結(jié)合sinB工0 ,可求Icim4 =小,結(jié)合范圍口 <力 < 河, 可求=-.3(幻由已知利用余弦定理可得 /一 3U-4°Q ,解得C的值,根據(jù)三角形面積公式即可計算得解.【詳解】解:(1) v aainB - bcusA = 0

16、 .、由正弦定理可得:sinAainB =,v sinH 豐 0,二 si nA = cosA ,即 L即4=,0 < < 7T7T,+ 力、由余弦定理 / = / 十 d - 混,可得:13 = 9 + c,- 2 X m X c x g ,可得:/一女一4 "。,、解得:。=4,(負值舍去),1 1第廠募5 力麗=即由"'= -x3x4x = 33【點睛】本題主要考查了正弦定理,余弦定理,三角形面積公式在解三角形中的綜合應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.19 .已知公差不為零的等差數(shù)列 15的前n項和為工,5藐=4加,且出,%,成等比數(shù)列.

17、(I)求數(shù)列冊的通項公式;設(shè)3 彳一;數(shù)列直的前n項和為建,證明:【答案】(1)趣= 271;(2)詳見解析.【解析】【分析】。)設(shè)等差數(shù)列的公差為 d,運用等差數(shù)列的通項公式和求和公式、等比數(shù)列的中項性質(zhì)可得首項和公差的方程組,解方程可得首項和公差,即可得到所求通項公式;(2)求得與=(y D(4 + 1)(2n - 1 )(2n + 1)t),由數(shù)列的裂項相消求和,上M + 1化簡可得%,再由不等式的性質(zhì),即可得證.【詳解】解:(1)公差d不為零的等差數(shù)列%的前n項和為工,S四二 420,可得2(網(wǎng)十190d = 420,出,空,/成等比數(shù)列,可得a| = a2ae ,即為(%十3d)?

18、= (附十d)(口1+ 7d),即為% = d,則 % = 2 + rZ(n -l)=2n;1由®可得% = d = Z(團證明:勾=(口廠)(%十)=(27一()(2抑十1);去1 21十1), 可得前n項和為廉斗1-| +長+”/廠/+彳) 由-> 0 可得T植 <二出加+1,何怙丁【點睛】本題考查等差數(shù)列的通項公式和求和公式、等比數(shù)列中項性質(zhì),以及數(shù)列的裂項相消求和,考查化簡整理的運算能力,屬于中檔題.y2J320 .已知橢圓C:方十萬=1(口.>8>0)的離心率為 三,短軸的一個端點到右焦點的距離為2.a b211)求橢圓C的方程;12)設(shè)直線l :

19、¥ = +秋交橢圓C于A, B兩點,且依日|=布,求m的值.【答案】(1)彳 +/ = 1 ; (2) m= ± 1.【解析】【分析】W通過短軸的一個端點到右焦點的距離為2可知口 = 2 ,進而利用離心率的值計算即得結(jié)論;為設(shè)力(叼為),風勺,Vd聯(lián)立直線與橢圓方程,消去 y得到關(guān)于x的一元二次方程,得到根與系數(shù)的關(guān)系,再利用弦長公式即可得出.-a2 = b2 + c2 = 22【詳解】解:(1)由題意可得,巨口 2解得:a=2, b = l,.,橢圓C的方程為- + y2=l ;為設(shè)百(勺,力),雙勺辦,13、I y = t + m聯(lián)立!2,x2 4- 4y2 - 4得上

20、* + 2m_r + 2m2 -2 = 0,.*.x1 + x2= -2m XjX2= 2m2-2,|訓=.'I + 勺一 0| =1 x 毋-毋 + B jLj=,丫2 -= i15,解得m= ±1.【點睛】本題考查了橢圓的標準方程及其性質(zhì)、韋達定理、弦長公式,屬于中檔題.21.如圖,在四棱錐P-網(wǎng)片。中,平面PMD_L平面ABCDP百二口口 二 4 ,四邊形ABCDI邊長為4的菱形,乙/打二呂?!埃珽是AD的中點.(I)求證:BE_L平面PAD(幻求平面PA的平面PBC所成的銳二面角的余弦值.【答案】 詳見解析;(2)等.【解析】【分析】連接BD推導出PE 1AP, PE

21、1M,由此能證明HE_L平面PADPAB以E為原點,EA EB EP為x, y, z軸,建立空間直角坐標系,利用向量法能求出平面 與平面PBC所成銳二面角的余弦值.【詳解】證明:(1)連接BQ由P/1 = PD = 4, E是AD的中點,得PE由平面PAD 1平面ABCD可得PE 1平面ABCD FE _LBE ,又由于四邊形 ABC四邊長為4的菱形,Z/1 = 60 " ,*.BE LAD,_L 平面P?l。,解:Q)以E為原點,EA EB EP為x, y, z軸,建立空間直角坐標系,P(O,0, 2,很0, 0),坑口,2記,0), C(-470),氏二(2,0, -2忐),豳=

22、02串2強,定=(4,2祗令平面PAB的法向量為n = (x.y,結(jié)合大瓦! = 0) F屯=0,建立方程得到限整九,則取,= 】,得口眄,1),同理可得平面 PBC勺一個法向量為 病=(。,1, D,所以平面PA*平面PBC所成銳二面角的余弦值為:,1-回|(?<J5 < rn , n > | -. 5【點睛】本題考查線面垂直的證明,考查二面角的余弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,是中檔題.22.已知F為拋物線E:凡必>0)的焦點,"4 1)為E上一點,且|CF| 二 Z.過F任作兩條互相垂直

23、的直線。,k,分別交拋物線 E于P, Q和M N兩點,A, B分別為線段PQ MN的中 與 八、(I)求拋物線E的方程及點C的坐標;2)試問之+ W 是否為定值?若是,求出此定值;若不是,請說明理由;|PQ| MN13)證明直線AB經(jīng)過一個定點,求此定點的坐標,并求&若?方面積的最小值.1/ /S/【答案】(1)拋物線方程為Z = 4v,C出1)或0-2,1) ;(2)是定值,定值為:;(3)過定點(0,3); 4百。日面積的最小值為6.【解析】【分析】11)根據(jù)拋物線的性質(zhì)和定義即可求出F = 2 ,代值計算即可求出點C的坐標,Q)設(shè)直線"的方程為y = 4x + l,立A0,則直線4的方程為,=,設(shè)P(x/i),力,km(工而,做燈辦),根據(jù)拋物線定義可得pQ=yy22, lwl = y3+A+2,再分別聯(lián)立4111方程組根據(jù)韋達定理可得PQ=4 + 4d,網(wǎng)Nl=4十口,即可求出+=片I /QITT3)設(shè)再以),見與,加),由分別求出點A, B的坐標

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論