磁粉芯在高性能EMI濾波器中的應用_第1頁
磁粉芯在高性能EMI濾波器中的應用_第2頁
磁粉芯在高性能EMI濾波器中的應用_第3頁
磁粉芯在高性能EMI濾波器中的應用_第4頁
磁粉芯在高性能EMI濾波器中的應用_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、歡迎訪問Freekaoyan論文站磁粉芯在高性能EMI濾波器中的應用歡迎訪問Freekaoyan論文站    歡迎訪問Freekaoyan論文站    摘要:介紹了用鐵硅鋁磁粉芯制作的單級和雙級濾波器的頻率響應特性。對應用三種不同磁粉芯材料(鐵鎳鉬合金、50鐵鎳合金、鐵硅鋁合金)所制成的濾波器的性能進行了測試,并給出相關的特性曲線。1引言鐵鎳鉬合金MPP,高磁通鐵鎳50HF合金和鐵硅鋁合金SUPERMSS等三種不同材料的磁粉芯已被廣泛地應用在電源濾波電感之中。特別是在抑制和過濾差模傳導EMI的線路濾波(PowerL

2、ineFiltering)電路中,上述三種磁粉芯都有獨具特色的應用。本文將從濾波電路簡介開始,再通過實例說明使用多只電感器在濾波電路中的優(yōu)點。除此之外,還將對上述三種不同磁粉芯材料所制作的電感器,在一定的工作頻率和不同電流下所產生的功率損耗和電感穩(wěn)定性做逐一對比。對應不同的工作頻率,電感器可以得到不同的等效串聯電感,等效串聯電阻和等效串聯阻抗,這些數值反映了繞線分布電容大小和磁粉芯中渦流損耗的大小。圖1單級和雙級濾波器示意圖(a)單級濾波器(15A)(b)雙級濾波器(15A)2單級與多級濾波器在電力和電子功率變換系統中,濾波器均采用LC電路。這種濾波器一般為“低通濾波器”。濾波器設計非常復雜,

3、需要數學計算,計算機輔助工程和實際經驗相結合。本文考慮兩種濾波器,如圖1所示,一種是單級(一只電感和一只電容組成),另一種是雙級(兩只電感和兩只電容)。接有濾波器的電路具有明顯的頻率響應特性,但是由于負載和電源的阻尼作用,頻率響應又是有限的。在實際應用中,還要考慮電感器繞組電阻,磁粉芯損耗,電容器引線、電極和介質損耗影響。更高頻率下的損耗構成附加阻尼有利于濾波器穩(wěn)定運行。而且寄生參數(如電容器引線電感和電感繞組的分布電容)都會對濾波器性能產生影響。寄生參數如圖2所示,RS為電感器的等效串聯電阻,RC為電容器的等效串聯電阻。用幾種型號的美國阿諾公司SUPERMSS鐵硅鋁磁粉芯制做單級濾波器和雙級

4、濾波器,具體設計參數為:圖2單級濾波器中考慮寄生參數的電路圖和實驗及源負載示意圖圖3等效串聯電感和電阻與頻率的關系曲線圖4等效并聯電容和電阻與頻率之間的關系曲線圖5增益和相位與頻率的關系曲線(對單級濾波器)圖6增益和相位與頻率的關系曲線(對雙級濾波器電路)圖7復合增益和相位與頻率關系曲線(對單級和雙級濾波器)(1)單級濾波器電感磁芯采用一只鐵硅鋁MS1300602型(磁導率為60),電感量為13.2H,電感繞組導線采用3股18AWG線規(guī)漆包線,DC直流電阻值為4.5m,電容器采用一只聚丙烯電容,電容量為15F。(2)雙級濾波器兩只電感分別采用兩只鐵硅鋁MS1060602型(磁導率為60),每只

5、電感量為7.95H,電感繞組導線也采用與單級濾波器相同的三股18AWG漆包線,圈數為10圈,電感總電阻為5.4m,電容器分別采用兩只聚丙烯電容,電容量分別為15F。由于每只電感所繞的圈數少,所以在同樣電流下所產生的直流磁場強度要低14.5。對該二種濾波器的頻率響應特性,用HP4194A阻抗/增益相位分析儀進行測試,實驗信號電壓0.5Vrms。結果如圖3、圖4、圖5、圖6、圖7所示。從圖3可以看到,兩種濾波電路(單級和雙級)的等效串聯電感量(Ls)和電阻值(Rs)隨頻率變化的曲線。電感量大的單級濾波器的自振頻率在26MHz,電感量小的雙級濾波器在40MHz以上時還具有電感特性?;蛘哒f電感量小的雙

6、級濾波器,其工作頻率范圍較寬。圖4顯示了電容器有關數值與頻率的關系曲線,即等效并聯電容(Cp)和等效并聯電阻(Rp)隨頻率變化的曲線??梢钥吹剑娙萜髋c其引線電感發(fā)生諧振的頻率大約在250kHz。為了說明多級濾波電路的優(yōu)點,現把單級和雙級濾波器的頻率響應曲線分別示于圖5和圖6。測試條件使用了最偏離電源的電路工作參數,輸入源阻抗為50,負載阻抗也是50。在典型的電路中,阻抗值是變化的,并不總是匹配的,尤其在低頻下,阻抗值會非常低。雖然實驗條件與實際應用的電路條件不一樣,但是,實驗結果表明,用來對單級濾波器和雙級濾波器做對比,可以得到許多有用的實驗數據。例如:對于每種濾波器而言,衰減量達到最大(增

7、益達到最小值)的原因都是由于電容器與其引線電感發(fā)生諧振所造成的。對于單級濾波器,這一點發(fā)生在175kHz。所以盡量縮短電容器引線長度的重要性是非常明顯的。隨著頻率從175kHz增加,衰減又開始減少(增益增加),這是因為引線電感阻礙了每只電容器返回電流的流動。另一個重要的結果是,雙級濾波器在20kHz頻率點下,具有最低的衰減(最高的增益)。從理論計算,雙級濾波器應該視同于2個單級濾波器在14.6kHz頻率點上的效果,但是由于電容C1,電感L2和電容C3的阻尼效果,所以頻率點變到了20kHz。在20kHz頻率點,產生了大約30dB的衰減。超過這個頻率點之后,雙級濾波器的增益衰減在60kHz,比單級

8、濾波器還要低20dB。最后還可以注意到,雙級濾波器在300kHz到1MHz范圍內,增益衰減都比單段濾波器大10dB。附加電感和電容減少了電容引線的電感效果。在美國,因為無線電調幅AM波段是在540kHz到1.6MHz之間,這樣對于改善此波段內的濾波器性能,非常有利。上述濾波器測試條件為,將電容器側作為輸入或參考通道,將電感器側作為測試通道。通過觀察可以看到,頻率響應特性在上述測試連接方式和采用電感器側連接到參考通道,將電容器連接到測試通道的結果是相似的。因此,上述實驗結果也適用于電感器輸入型電路。3電源濾波器濾波器通常用于電路或一部分電路以防止電磁干擾(EMI)。不設濾波器則無用的電信號將會沿

9、著電源線或共用母線傳導引起EMI,而傳導干擾也能繼發(fā)射頻干擾(RFI),這是因為電源線對于高頻則是一天線。濾波器的作用就是防止在供電的同時將電噪聲傳導到電力線上。對于那些連接到公用電上的電子、電器設備而言,各國政府機構都對特定的頻率范圍內所允許的最大傳導噪聲電壓有具體的規(guī)定。比如,美國聯邦通訊委員會(FCC)就規(guī)定,在450kHz到30MHz頻段內的無線電射頻干擾,應限制在48dBV(250V)以下。這種規(guī)定的目的就是要防止射頻干擾對公共電子設施,如無線電、電視機、電話機等的干擾。在電子系統中對電源輸出端噪聲的限制,要由其負載的需要決定。在大多數情況下,噪聲的濾除是由前述的濾波元件(電感器和電

10、容器)來完成的,由它們抑制輸出電壓的脈動。為了抑制電源輸出端的EMI,有時設計二級濾波。開關電源的功率晶體管和二極管,都需要在電源輸入端加裝EMI濾波器。在電路中電流的突然變化會導致電壓的短暫升高(或稱電壓尖峰),這個電壓尖峰既施加在輸入導體之間,也施加在導體與地線之間。在輸入導線之間的EMI電壓稱之為差模噪聲。導線對接地端的噪聲稱之為共模噪聲。對于抑制共模噪聲的電感器,需要在一個磁芯上繞制兩組電流方向相反的導線,并使用高磁導率的磁芯。開關電源中的應用線路圖。在輸入端,可以是交流輸入(如市電),也可以是電池供電(如48V,用于電信設備中)。當電池供電時,磁化電流是恒定的直流電。對于高功率因數的

11、交流電系統,磁化電流接近正弦波波形。而低功率因數的交流電系統,其磁化電流則由一系列的交變脈沖疊加組成。三種磁粉芯材料(鐵鎳鉬MPP,鐵鎳HF和鐵硅鋁SUPERMSS)最適合用于差模濾波器中的電感(有時這種電感也稱之為“串模電感”或“扼流圈”)。原因是這三種磁粉芯材料在偏磁場下具有極好的電感量保持能力。鐵鎳50HF高磁通磁粉芯(美國阿諾公司注冊商標HiFluxTM),特別適合用于高磁通密度工作條件。為了便于比較,圖9標明了三種不同材料磁粉芯在直流偏磁場下的磁導率變化曲線。圖8典型的EMI濾波器電路配置和差模電感器上的電壓,電流以及磁滯回線(a)電路(b)磁滯回線(c)電感器上電壓、電流圖9磁導率

12、與DC直流偏磁關系曲線圖10磁芯損耗與磁通密度關系曲線圖9中的曲線是對三種不同材料的磁粉芯,在相同尺寸,相同磁導率,單級濾波器電路中測試得到的數據而繪出的。磁芯分別為鐵鎳鉬MPP磁粉芯(A2910612);鐵鎳50HF合金(HF1300602);和鐵硅鋁SUPERMSS合金(MS1300602),尺寸均為外徑33.02mm×內徑19.94mm×高度10.67mm,磁導率相同(60)。由圖9可知三種材料的磁導率隨直流偏磁的增大而減小。所謂“完全繞線磁芯”,指繞線后的磁芯,漆包線繞線厚度正好達到磁芯原來內徑的一半位置。通常,在生產工藝中,需要考慮使繞線機上的線鉤或線梭在繞制最后

13、一圈漆包線時,還可以有足夠的空間。在本實例中,電感量為1.9mH,這個電感量數值是典型的線路濾波所需要的電感量。一般而言,濾波電感的電感量選擇范圍在幾個H到幾個mH之間。在工頻下,要求磁芯損耗低,以便充分發(fā)揮磁芯材料的高飽和磁通密度性能。圖10是對高磁通鐵鎳50HF磁粉芯測試結果而繪制的曲線。由于高磁通鐵鎳50HF磁粉芯有高的損耗,所以可以用在工作條件最惡劣的情況。在400Hz,9000Gs磁通密度下,它的磁芯損耗為200mW/cm3。在50Hz或60Hz下工作,磁通密度的使用上限要根據磁芯磁導率變化的大小確定,具體可參見圖11。另外一個需要重點考慮的因素是,電感量會隨頻率變化而變化。圖12,

14、圖13和圖14所示的是,三種不同磁粉芯材料(MPP,HF和SUPERMSS)繞制的電感器(采用單層繞線,電感量為60H),它們各自的等效電感、等效串聯電阻、等效阻抗與頻率的關系曲線。從圖12可看到,高磁通鐵鎳HF磁粉芯的等效串聯電感值隨頻率增加而跌落,這是由于其磁導率下圖11磁通密度與磁導率的關系曲線圖12等效串聯電感和頻率的關系曲線(單層繞線條件下)圖13等效串聯電阻與頻率的關系曲線(單層繞線條件下)圖14阻抗與頻率的關系曲線(單層繞線條件下)圖15等效串聯電感/電阻和頻率的關系曲線(100kHz1MHz)圖16阻抗與頻率的關系曲線(100kHz1MHz)圖17單層和完全繞線設計情況下等效串

15、聯圖18單層和完全繞線設計情況下阻抗與頻率的關系曲線降所致。其根本原因在于頻率增高后渦流損耗隨之增大所造成的。正如前所述,在高頻下的損耗對濾波器來說是一個優(yōu)點,這是因為這個損耗對阻尼衰減提供了附加的穩(wěn)定因素。圖15是對圖12和圖13、圖16是對圖14在100kHz到1MHz范圍內的曲線進行的局部放大圖,以便更清楚地看到三種磁粉芯的串聯等效電感和等效電阻及等效阻抗隨頻率變化的趨勢??梢院苊黠@地看到,鐵硅鋁SUPERMSS在高頻下的渦流損耗是最低的,所以它的電感量(磁導率)和電阻都是變化最小的或基本不變的。最后,看一下電感器的分布電容(對單層和多層繞線做比較)與頻率的關系曲線,見圖17和圖18。從

16、圖中看到,超過1.6MHz之后,這個雜散電容確實使成本高的多層電感器的阻抗比成本較低的單層電感器的阻抗要低。4結語三種磁粉芯材料都非常適合用于電源濾波。高磁通鐵鎳50HF磁粉芯的性能最好,因為它在高飽和磁通密度下具有保持電感量的能力,同時它還提供在高頻下所需要的阻尼衰減功能。另外一個需要重點考慮的因素是,由于磁性材料本身所具有的磁致伸縮所產生的音頻噪聲。而高磁通HF鐵鎳50磁粉芯在50Hz或60Hz下,會產生音頻噪聲(嗡嗡聲)。當然,直流磁化電流不會產生音頻噪聲,所以它最適合用作電池供電的電源系統中輸入濾波電感。鐵鎳鉬MPP磁粉芯和鐵硅鋁SUPERMSS磁粉芯都具有特別低的磁致伸縮系數,它們都不會產生音頻

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論