下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、本文格式為Word版,下載可任意編輯高三蘇教版數(shù)學(xué)知識(shí)點(diǎn) 高三數(shù)學(xué)必修一知識(shí)點(diǎn) 1.“包含”關(guān)系子集 注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA 2.“相等”關(guān)系:A=B(55,且55,則5=5) 實(shí)例:設(shè)A=x|x2-1=0B=-1,1“元素相同則兩集合相等” 即:任何一個(gè)集合是它本身的子集。A(A 真子集:如果A(B,且A(B那就說(shuō)集合A是集合B的真子集,記作AB(或BA) 如果A(B,B(C,那么A(C 如果A(B同時(shí)B(A那么A=B 3.不含任何元素的集合叫做空集,記為 規(guī)定:空集是任何集合的子集,
2、空集是任何非空集合的真子集。 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集 高三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)整理 軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。 一、求動(dòng)點(diǎn)的軌跡方程的基本步驟。 1.建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo); 2.寫出點(diǎn)M的集合; 3.列出方程=0; 4.化簡(jiǎn)方程為最簡(jiǎn)形式; 5.檢驗(yàn)。 二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。 1.直譯法:直接將條件翻譯
3、成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。 2.定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。 3.相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。 4.參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。 5.交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)
4、的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。 求動(dòng)點(diǎn)軌跡方程的一般步驟: 建系建立適當(dāng)?shù)淖鴺?biāo)系; 設(shè)點(diǎn)設(shè)軌跡上的任一點(diǎn)P(x,y); 列式列出動(dòng)點(diǎn)p所滿足的關(guān)系式; 代換依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn); 證明證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。 高三下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 (一)導(dǎo)數(shù)第一定義 設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量x(x0+x也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)取得增量y=f(x0+x)-f(x0);如果y與x之比當(dāng)x0時(shí)極限存在,則稱函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限值為函數(shù)
5、y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f(x0),即導(dǎo)數(shù)第一定義 (二)導(dǎo)數(shù)第二定義 設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化x(x-x0也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)變化y=f(x)-f(x0);如果y與x之比當(dāng)x0時(shí)極限存在,則稱函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f(x0),即導(dǎo)數(shù)第二定義 (三)導(dǎo)函數(shù)與導(dǎo)數(shù) 如果函數(shù)y=f(x)在開區(qū)間I內(nèi)每一點(diǎn)都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時(shí)函數(shù)y=f(x)對(duì)于區(qū)間I內(nèi)的每一個(gè)確定的x值,都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱這個(gè)函數(shù)為原來(lái)函數(shù)y=f(x)的導(dǎo)函數(shù),記作y,f(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡(jiǎn)稱導(dǎo)數(shù)。 (四)單調(diào)性及其應(yīng)用 1.利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟 (1)求f(x) (2)確定f(x)在(a,b)內(nèi)符號(hào)(3)若f(x)0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù) 2.用導(dǎo)數(shù)求
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 心理危機(jī)干預(yù)模式-第2篇-深度研究
- 云技術(shù)對(duì)影視產(chǎn)業(yè)的影響-深度研究
- 作物病蟲害自動(dòng)識(shí)別技術(shù)-深度研究
- 文物三維建模與動(dòng)畫制作-深度研究
- 極地設(shè)施智能監(jiān)控-深度研究
- PHP在社交網(wǎng)絡(luò)廣告投放-深度研究
- 3D重建與虛擬現(xiàn)實(shí)-深度研究
- 人工智能與智能家居融合技術(shù)-深度研究
- 抗生素殘留風(fēng)險(xiǎn)評(píng)估模型-深度研究
- 關(guān)節(jié)鏡下肩關(guān)節(jié)重建-深度研究
- 2024版?zhèn)€人私有房屋購(gòu)買合同
- 2024爆炸物運(yùn)輸安全保障協(xié)議版B版
- 2025年度軍人軍事秘密保護(hù)保密協(xié)議與信息安全風(fēng)險(xiǎn)評(píng)估合同3篇
- 《食品與食品》課件
- 讀書分享會(huì)《白夜行》
- 光伏工程施工組織設(shè)計(jì)
- DB4101-T 121-2024 類家庭社會(huì)工作服務(wù)規(guī)范
- 化學(xué)纖維的鑒別與測(cè)試方法考核試卷
- 2024-2025學(xué)年全國(guó)中學(xué)生天文知識(shí)競(jìng)賽考試題庫(kù)(含答案)
- 作品著作權(quán)獨(dú)家授權(quán)協(xié)議(部分授權(quán))
- 取水泵站施工組織設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論