




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、小學數學13種典型例題口訣及解析小學數學的難點在哪里?和差、和比、差比、路程、工程、植樹、盈虧這些題型都是小學數學的難點內容,也是考試必考的題型之一。今兒,貼心的小編為親們整理小學數學13種題型的例題口訣及解析,讓孩子做題輕松愉快!1和差問題已知兩數的和與差,求這兩個數。例:已知兩數和是10,差是2,求這兩個數。【口訣】和加上差,越加越大;除以2,便是大的;和減去差,越減越小;除以2,便是小的。按口訣,則大數=(10+2)/2=6,小數=(10-2)/2=4。2差比問題(差倍問題)例:甲數比乙數大12,甲:乙=7:4,求兩數。【口訣】我的比你多,倍數是因果。分子實際差,分母倍數差。商是一倍的,
2、乘以各自的倍數,兩數便可求得。先求一倍的量,12/(7-4)=4,所以甲數為:4X7=28,乙數為:4X4=16。3年齡問題例1:小軍今年8 歲,爸爸今年34歲,幾年后,爸爸的年齡是小軍的3倍?【口訣】歲差不會變,同時相加減。歲數一改變,倍數也改變。抓住這三點,一切都簡單。分析:歲差不會變,今年的歲數差點34-8=26,到幾年后仍然不會變。已知差及倍數,轉化為差比問題。26/(3-1)=13,幾年后爸爸的年齡是13X3=39歲,小軍的年齡是13X1=13歲,所以應該是5年后。例2:姐姐今年13歲,弟弟今年9歲,當姐弟倆歲數的和是40歲時,兩人各應該是多少歲?分析:歲差不會變,今年的歲數差13-
3、9=4幾年后也不會改變。幾年后歲數和是40,歲數差是4,轉化為和差問題。則幾年后,姐姐的歲數:(40+4)/2=22,弟弟的歲數:(40-4)/2=18,所以答案是9年后。4和比問題已知整體,求部分。例:甲乙丙三數和為27,甲:乙:丙=2:3:4,求甲乙丙三數?!究谠E】家要眾人合,分家有原則。分母比數和,分子自己的。和乘以比例,就是該得的。分母比數和,即分母為:2+3+4=9;分子自己的,則甲乙丙三數占和的比例分別為2/9,3/9,4/9。和乘以比例,則甲為27X2/9=6,乙為27X3/9=9,丙為27X4/9=12。5雞兔同籠問題例:雞免同籠,有頭36 ,有腳120,求雞兔數?!究谠E】假設
4、全是雞,假設全是兔。多了幾只腳,少了幾只足?除以腳的差,便是雞兔數。求兔時,假設全是雞,則免子數=(120-36X2)/(4-2)=24求雞時,假設全是兔,則雞數 =(4X36-120)/(4-2)=126路程問題【口訣】相遇那一刻,路程全走過。除以速度和,就把時間得。(1)相遇問題例:甲乙兩人從相距120千米的兩地相向而行,甲的速度為40千米/小時,乙的速度為20千米/小時,多少時間相遇?相遇那一刻,路程全走過,即甲乙走過的路程和恰好是兩地的距離120千米。除以速度和,就把時間得,即甲乙兩人的總速度為兩人的速度之和40+20=60(千米/小時),所以相遇的時間就為120/60=2(小時)(2
5、)追及問題例:姐弟二人從家里去鎮(zhèn)上,姐姐步行速度為3千米/小時,先走2小時后,弟弟騎自行車出發(fā)速度6千米/小時,幾時追上?【口訣】慢鳥要先飛,快的隨后追。先走的路程,除以速度差,時間就求對。先走的路程:3X2=6(千米)速度的差:6-3=3(千米/小時)追上的時間:6/3=2(小時)7濃度問題(1)加水稀釋例:有20千克濃度為15%的糖水,加水多少千克后,濃度變?yōu)?0%?【口訣】加水先求糖,糖完求糖水。糖水減糖水,便是加水量。加水先求糖,原來含糖為:20X15%=3(千克)糖完求糖水,含3千克糖在10%濃度下應有多少糖水,3/10%=30(千克)糖水減糖水,后的糖水量減去原來的糖水量,30-2
6、0=10(千克)(2)加糖濃化例:有20千克濃度為15%的糖水,加糖多少千克后,濃度變?yōu)?0%?【口訣】加糖先求水,水完求糖水。糖水減糖水,求出便解題。加糖先求水,原來含水為:20X(1-15%)=17(千克)水完求糖水,含17千克水在20%濃度下應有多少糖水,17/(1-20%)=21.25(千克)糖水減糖水,后的糖水量再減去原來的糖水量,21.25-20=1.25(千克)8工程問題例:一項工程,甲單獨做4天完成,乙單獨做6天完成。甲乙同時做2天后,由乙單獨做,幾天完成?【口訣】工程總量設為1,1除以時間就是工作效率。單獨做時工作效率是自己的,一齊做時工作效率是眾人的效率和。1減去已經做的便
7、是沒有做的,沒有做的除以工作效率就是結果。1-(1/6+1/4)X2/(1/6)=1(天)9植樹問題【口訣】植樹多少棵,要問路如何?直的減去1,圓的是結果。例1:在一條長為120米的馬路上植樹,間距為4米,植樹多少棵?路是直的,則植樹為120/4-1=29(棵)。例2:在一條長為120米的圓形花壇邊植樹,間距為4米,植樹多少棵?路是圓的,則植樹為120/4=30(棵)。10盈虧問題【口訣】全盈全虧,大的減去小的;一盈一虧,盈虧加在一起。除以分配的差,結果就是分配的東西或者是人。例1:小朋友分桃子,每人10個少9個;每人8個多7個。求有多少小朋友多少桃子?一盈一虧,則公式為:(9+7)/(10-
8、8)=8(人),相應桃子為8X10-9=71(個)例2:士兵背子彈。每人45發(fā)則多680發(fā);每人50發(fā)則多200發(fā),多少士兵多少子彈?全盈問題,則大的減去小的,即公式為:(680-200)/(50-45)=96(人),相應的子彈為96X50+200=5000(發(fā))。例3:學生發(fā)書。每人10本則差90本;每人8 本則差8本,多少學生多少書?全虧問題,則大的減去小,即公式為:(90-8)/(10-8)=41(人),相應書為41X10-90=320(本)11余數問題例:時鐘現在表示的時間是18點整,分針旋轉1990圈后是幾點鐘?【口訣】余數有(N-1)個,最小的是1,最大的是(N-1)。周期性變化時
9、,不要看商,只要看余。分析:分針旋轉一圈是1小時,旋轉24圈就是時針轉1圈,也就是時針回到原位。1980/24的余數是22,所以相當于分針向前旋轉22個圈,分針向前旋轉22個圈相當于時針向前走22個小時,時針向前走22小時,也相當于向后24-22=2個小時,即相當于時針向后拔了2小時。即時針相當于是18-2=16(點)。12牛吃草問題【口訣】每牛每天的吃草量假設是份數1,A頭B天的吃草量算出是幾?M頭N天的吃草量又是幾?大的減去小的,除以二者對應的天數的差值,結果就是草的生長速率。原有的草量依此反推。公式:A頭B天的吃草量減去B天乘以草的生長速率。未知吃草量的牛分為兩個部分:一小部分先吃新草,
10、個數就是草的比率;有的草量除以剩余的牛數就將需要的天數求知。例:整個牧場上草長得一樣密,一樣快。27頭牛6天可以把草吃完;23頭牛9天也可以把草吃完。問21頭多少天把草吃完。每牛每天的吃草量假設是1,則27頭牛6天的吃草量是27X6=162,23頭牛9天的吃草量是23X9=207;大的減去小的,207-162=45;二者對應的天數的差值,是9-6=3(天),則草的生長速率是45/3=15(牛/天);原有的草量依此反推公式:A頭B天的吃草量減去B天乘以草的生長速率。原有的草量=27X6-6X15=72(牛/天)。將未知吃草量的牛分為兩個部分:一小部分先吃新草,個數就是草的比率,這就是說將要求的2
11、1頭牛分為兩部分,一部分15頭牛吃新生的草;剩下的21-15=6去吃原有的草,所求的天數為:原有的草量/分配剩下的牛=72/6=12(天)13正方體展開圖正方體有6個面,12條棱,當沿著某棱將正方體剪開,可得到正方體的展開圖形,很顯然,正方體的展開圖形不是唯一的,但也不是無限的,事實上,正方體的展開圖形有且只有11種,11種展開圖形又可以分為4種類型:141型中間一行4個作側面,上下兩個各作為上下底面,共有6種基本圖形。2231型中間一行3個作側面,共3種基本圖形。3222型中間兩個面,只有1種基本圖形。433型中間沒有面,兩行只能有一個正方形相連,只有1種基本圖形。小學階段奧數知識點匯總,先
12、收藏了!還包括小升初中常考的題目類型等。有工程問題、行程問題、質數合數問題等等。1.、小升初奧數知識點(年齡問題的三大特征)兩個人的年齡差是不變的;兩個人的年齡是同時增加或者同時減少的;兩個人的年齡的倍數是發(fā)生變化的;2、小升初奧數知識點(植樹問題總結):基本類型:在直線或者不封閉的曲線上植樹,兩端都植樹在直線或者不封閉的曲線上植樹,兩端都不植樹在直線或者不封閉的曲線上植樹,只有一端植樹。3、雞兔同籠問題基本概念:雞兔同籠問題又稱為置換問題、假設問題,就是把假設錯的那部分置換出來;基本思路: 設,即假設某種現象存在(甲和乙一樣或者乙和甲一樣):假設后,發(fā)生了和題目條件不同的差,找出這個差是多少
13、;每個事物造成的差是固定的,從而找出出現這個差的原因;再根據這兩個差作適當的調整,消去出現的差。基本公式:把所有雞假設成兔子:雞數(兔腳數×總頭數總腳數)÷(兔腳數雞腳數)把所有兔子假設成雞:兔數(總腳數一雞腳數×總頭數)÷(兔腳數一雞腳數)關鍵問題:找出總量的差與單位量的差。4、奧數知識點(盈虧問題)盈虧問題基本概念:一定量的對象,按照某種標準分組,產生一種結果:按照另一種標準分組,又產生一種結果,由于分組的標準不同,造成結果的差異,由它們的關系求對象分組的組數或對象的總量基本思路:先將兩種分配方案進行比較,分析由于標準的差異造成結果的變化,根據這個關
14、系求出參加分配的總份數,然后根據題意求出對象的總量基本題型:一次有余數,另一次不足;基本公式:總份數(余數不足數)÷兩次每份數的差當兩次都有余數;基本公式:總份數(較大余數一較小余數)÷兩次每份數的差當兩次都不足;基本公式:總份數(較大不足數一較小不足數)÷兩次每份數的差基本特點:對象總量和總的組數是不變的。關鍵問題:確定對象總量和總的組數。5、小升初奧數知識點(牛吃草問題)牛吃草問題基本思路:假設每頭牛吃草的速度為“1”份,根據兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長速度和總草量?;咎攸c:原草量和新草生長速度是不變的;關
15、鍵問題:確定兩個不變的量?;竟剑荷L量=(較長時間×長時間牛頭數-較短時間×短時間牛頭數)÷(長時間-短時間);總草量=較長時間×長時間牛頭數-較長時間×生長量;6、小升初奧數知識點(平均數問題)平均數基本公式:平均數=總數量÷總份數總數量=平均數×總份數總份數=總數量÷平均數平均數=基準數每一個數與基準數差的和÷總份數基本算法:算出總數量以及總份數,利用基本公式或進行計算。(基準數法:根據給出的數之間的關系,確定一個基準數;一般選與所有數比較接近的數或者中間數為基準數;以基準數為標準,求所有給出數與
16、基準數的差;再求出所有差的和;再求出這些差的平均數;最后求這個差的平均數和基準數的和,就是所求的平均數,具體關系見基本公式)7 、小升初奧數知識點(周期循環(huán)數)周期循環(huán)與數表規(guī)律周期現象:事物在運動變化的過程中,某些特征有規(guī)律循環(huán)出現。周期:我們把連續(xù)兩次出現所經過的時間叫周期。關鍵問題:確定循環(huán)周期。閏 年:一年有366天;年份能被4整除;如果年份能被100整除,則年份必須能被400整除;平 年:一年有365天。 年份不能被4整除;如果年份能被100整除,但不能被400整除;8、小升初奧數知識點(抽屜原理)抽屜原理抽屜原則一:如果把(n+1)個物體放在n個抽屜里,那么必有一個抽屜中至少放有2
17、個物體。例:把4個物體放在3個抽屜里,也就是把4分解成三個整數的和,那么就有以下四種情況:4=4+0+0 4=3+1+0 4=2+2+0 4=2+1+1觀察上面四種放物體的方式,我們會發(fā)現一個共同特點:總有那么一個抽屜里有2個或多于2個物體,也就是說必有一個抽屜中至少放有2個物體。抽屜原則二:如果把n個物體放在m個抽屜里,其中n>m,那么必有一個抽屜至少有:k=n/m +1個物體:當n不能被m整除時。k=n/m個物體:當n能被m整除時。理解知識點:X表示不超過X的最大整數。例4.351=4;0.321=0;2.9999=2;關鍵問題:構造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據
18、抽屜原則進行運算。9、奧數知識點(定義新運算)小升初奧數知識點(數列求和)數列求和等差數列:在一列數中,任意相鄰兩個數的差是一定的,這樣的一列數,就叫做等差數列?;靖拍睿菏醉棧旱炔顢盗械牡谝粋€數,一般用a1表示;項數:等差數列的所有數的個數,一般用n表示;公差:數列中任意相鄰兩個數的差,一般用d表示;通項:表示數列中每一個數的公式,一般用an表示;數列的和:這一數列全部數字的和,一般用Sn表示基本思路:等差數列中涉及五個量:a1 ,an,d, n, sn,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個?;竟剑和椆剑篴n
19、 = a1+(n1)d;通項首項(項數一1) ×公差;數列和公式:sn,= (a1+ an)×n÷2;數列和(首項末項)×項數÷2;項數公式:n= (an- a1)÷d1;項數=(末項-首項)÷公差1;公差公式:d =(ana1)÷(n1);公差=(末項首項)÷(項數1);關鍵問題:確定已知量和未知量,確定使用的公式10、加法乘法原理和幾何計數加法原理:如果完成一件任務有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法,在第n類方法中有mn種不同方法,那么完成這件任務共有:m1+
20、m2. +mn種不同的方法。關鍵問題:確定工作的分類方法。基本特征:每一種方法都可完成任務。乘法原理:如果完成一件任務需要分成n個步驟進行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務共有:m1×m2. ×mn種不同的方法。關鍵問題:確定工作的完成步驟?;咎卣鳎好恳徊街荒芡瓿扇蝿盏囊徊糠帧V本€:一點在直線或空間沿一定方向或相反方向運動,形成的軌跡。直線特點:沒有端點,沒有長度。線段:直線上任意兩點間的距離。這兩點叫端點。線段特點:有兩個端點,有長度。射線:把直線的一端無限延長。射線特點
21、:只有一個端點;沒有長度。數線段規(guī)律:總數1+2+3+(點數一1);數角規(guī)律=1+2+3+(射線數一1);數長方形規(guī)律:個數=長的線段數×寬的線段數:數長方形規(guī)律:個數=1×1+2×2+3×3+行數×列數11 、小升初奧數知識點(質數與合數)質數:一個數除了1和它本身之外,沒有別的約數,這個數叫做質數,也叫做素數。合數:一個數除了1和它本身之外,還有別的約數,這個數叫做合數。質因數:如果某個質數是某個數的約數,那么這個質數叫做這個數的質因數。分解質因數:把一個數用質數相乘的形式表示出來,叫做分解質因數。通常用短除法分解質因數。任何一個合數分解質
22、因數的結果是唯一的。分解質因數的標準表示形式:N= ,其中a1、a2、a3an都是合數N的質因數,且a1。求約數個數的公式:P=(r1+1)×(r2+1)×(r3+1)××(rn+1)互質數:如果兩個數的最大公約數是1,這兩個數叫做互質數。12 、小升初奧數知識點(約數與倍數)約數和倍數:若整數a能夠被b整除,a叫做b的倍數,b就叫做a的約數。公約數:幾個數公有的約數,叫做這幾個數的公約數;其中最大的一個,叫做這幾個數的最大公約數。最大公約數的性質:1、幾個數都除以它們的最大公約數,所得的幾個商是互質數。2、幾個數的最大公約數都是這幾個數的約數。3、幾個
23、數的公約數,都是這幾個數的最大公約數的約數。4、幾個數都乘以一個自然數m,所得的積的最大公約數等于這幾個數的最大公約數乘以m。例如:12的約數有1、2、3、4、6、12;18的約數有:1、2、3、6、9、18;那么12和18的公約數有:1、2、3、6;那么12和18最大的公約數是:6,記作(12,18)=6;求最大公約數基本方法:1、分解質因數法:先分解質因數,然后把相同的因數連乘起來。2、短除法:先找公有的約數,然后相乘。3、輾轉相除法:每一次都用除數和余數相除,能夠整除的那個余數,就是所求的最大公約數。公倍數:幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數
24、。12的倍數有:12、24、36、48;18的倍數有:18、36、54、72;那么12和18的公倍數有:36、72、108;那么12和18最小的公倍數是36,記作12,18=36;最小公倍數的性質:1、兩個數的任意公倍數都是它們最小公倍數的倍數。2、兩個數最大公約數與最小公倍數的乘積等于這兩個數的乘積。求最小公倍數基本方法:1、短除法求最小公倍數;2、分解質因數的方法13 、小升初奧數知識點(數的整除)一、基本概念和符號:1、整除:如果一個整數a,除以一個自然數b,得到一個整數商c,而且沒有余數,那么叫做a能被b整除或b能整除a,記作b|a。2、常用符號:整除符號“|”,不能整除符號“”;因為
25、符號“”,所以的符號“”;二、整除判斷方法:1. 能被2、5整除:末位上的數字能被2、5整除。2. 能被4、25整除:末兩位的數字所組成的數能被4、25整除。3. 能被8、125整除:末三位的數字所組成的數能被8、125整除。4. 能被3、9整除:各個數位上數字的和能被3、9整除。5. 能被7整除:末三位上數字所組成的數與末三位以前的數字所組成數之差能被7整除。逐次去掉最后一位數字并減去末位數字的2倍后能被7整除。6. 能被11整除:末三位上數字所組成的數與末三位以前的數字所組成的數之差能被11整除。奇數位上的數字和與偶數位數的數字和的差能被11整除。逐次去掉最后一位數字并減去末位數字后能被1
26、1整除。7. 能被13整除:末三位上數字所組成的數與末三位以前的數字所組成的數之差能被13整除。逐次去掉最后一位數字并減去末位數字的9倍后能被13整除。三、整除的性質:1. 如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。2. 如果a能被b整除,c是整數,那么a乘以c也能被b整除。3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。4. 如果a能被b、c整除,那么a也能被b和c的最小公倍數整除。14 、小升初奧數知識點(余數及其應用)小升初奧數知識點(余數問題)余數的性質:余數小于除數。若a、b除以c的余數相同,則c|a-b或c|b-a。a與b的和除以c的余數等于a除以c
27、的余數加上b除以c的余數的和除以c的余數。a與b的積除以c的余數等于a除以c的余數與b除以c的余數的積除以c的余數余數、同余與周期一、同余的定義:若兩個整數a、b除以m的余數相同,則稱a、b對于模m同余。已知三個整數a、b、m,如果m|a-b,就稱a、b對于模m同余,記作ab(mod m),讀作a同余于b模m。二、同余的性質:自身性:aa(mod m);對稱性:若ab(mod m),則ba(mod m);傳遞性:若ab(mod m),bc(mod m),則a c(mod m);和差性:若ab(mod m),cd(mod m),則a+cb+d(mod m),a-cb-d(mod m);相乘性:若
28、a b(mod m),cd(mod m),則a×c b×d(mod m);乘方性:若ab(mod m),則anbn(mod m);同倍性:若a b(mod m),整數c,則a×c b×c(mod m×c);三、關于乘方的預備知識:若A=a×b,則MA=Ma×b=(Ma)b若B=c+d則MB=Mc+d=Mc×Md四、被3、9、11除后的余數特征:一個自然數M,n表示M的各個數位上數字的和,則Mn(mod 9)或(mod 3);一個自然數M,X表示M的各個奇數位上數字的和,Y表示M的各個偶數數位上數字的和,則MY-X或
29、M11-(X-Y)(mod 11);五、費爾馬小定理:如果p是質數(素數),a是自然數,且a不能被p整除,則ap-11(mod p)。15、小升初奧數知識點(分數與百分數的應用)基本概念與性質:分數:把單位“1”平均分成幾份,表示這樣的一份或幾份的數。分數的性質:分數的分子和分母同時乘以或除以相同的數(0除外),分數的大小不變。分數單位:把單位“1”平均分成幾份,表示這樣一份的數。百分數:表示一個數是另一個數百分之幾的數。常用方法: 向思維方法:從題目提供條件的反方向(或結果)進行思考。 對應思維方法:找出題目中具體的量與它所占的率的直接對應關系。轉化思維方法:把一類應用題轉化成另一類應用題進
30、行解答。最常見的是轉換成比例和轉換成倍數關系;把不同的標準(在分數中一般指的是一倍量)下的分率轉化成同一條件下的分率。常見的處理方法是確定不同的標準為一倍量。假設思維方法:為了解題的方便,可以把題目中不相等的量假設成相等或者假設某種情況成立,計算出相應的結果,然后再進行調整,求出最后結果。量不變思維方法:在變化的各個量當中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。替換思維方法:用一種量代替另一種量,從而使數量關系單一化、量率關系明朗化。同
31、倍率法:總量和分量之間按照同分率變化的規(guī)律進行處理。濃度配比法:一般應用于總量和分量都發(fā)生變化的狀況。16 、小升初奧數知識點(分數大小的比較)基本方法:通分分子法:使所有分數的分子相同,根據同分子分數大小和分母的關系比較。通分分母法:使所有分數的分母相同,根據同分母分數大小和分子的關系比較?;鶞蕯捣ǎ捍_定一個標準,使所有的分數都和它進行比較。分子和分母大小比較法:當分子和分母的差一定時,分子或分母越大的分數值越大。倍率比較法:當比較兩個分子或分母同時變化時分數的大小,除了運用以上方法外,可以用同倍率的變化關系比較分數的大小。(具體運用見同倍率變化規(guī)律)轉化比較方法:把所有分數轉化成小數(求出
32、分數的值)后進行比較。倍數比較法:用一個數除以另一個數,結果得數和1進行比較。大小比較法:用一個分數減去另一個分數,得出的數和0比較。倒數比較法:利用倒數比較大小,然后確定原數的大小。基準數比較法:確定一個基準數,每一個數與基準數比較17 、小升初奧數知識點(比和比例)比:兩個數相除又叫兩個數的比。比號前面的數叫比的前項,比號后面的數叫比的后項。比值:比的前項除以后項的商,叫做比值。比的性質:比的前項和后項同時乘以或除以相同的數(零除外),比值不變。比例:表示兩個比相等的式子叫做比例。a:b=c:d或比例的性質:兩個外項積等于兩個內項積(交叉相乘),ad=bc。正比例:若A擴大或縮小幾倍,B也
33、擴大或縮小幾倍(AB的商不變時),則A與B成正比。反比例:若A擴大或縮小幾倍,B也縮小或擴大幾倍(AB的積不變時),則A與B成反比。比例尺:圖上距離與實際距離的比叫做比例尺。按比例分配:把幾個數按一定比例分成幾份,叫按比例分配18 、小升初奧數知識點(綜合行程問題)基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、路程三者之間的關系.基本公式:路程=速度×時間;路程÷時間=速度;路程÷速度=時間關鍵問題:確定運動過程中的位置和方向。相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)追及問題:追及時間路程差÷速度差(寫出其他公式)
34、流水問題:順水行程=(船速+水速)×順水時間逆水行程=(船速-水速)×逆水時間順水速度=船速+水速逆水速度=船速-水速靜水速度=(順水速度+逆水速度)÷2水 速=(順水速度-逆水速度)÷2流水問題:關鍵是確定物體所運動的速度,參照以上公式。過橋問題:關鍵是確定物體所運動的路程,參照以上公式。主要方法:畫線段圖法基本題型:已知路程(相遇路程、追及路程)、時間(相遇時間、追及時間)、速度(速度和、速度差)中任意兩個量,求第三個量。19 、小升初奧數知識點(工程問題)基本公式:工作總量=工作效率×工作時間工作效率=工作總量÷工作時間工作時間
35、=工作總量÷工作效率基本思路:假設工作總量為“1”(和總工作量無關);假設一個方便的數為工作總量(一般是它們完成工作總量所用時間的最小公倍數),利用上述三個基本關系,可以簡單地表示出工作效率及工作時間.關鍵問題:確定工作量、工作時間、工作效率間的兩兩對應關系。經驗簡評:合久必分,分久必合。20 、小升初奧數知識點(邏輯推理問題)基本方法簡介:條件分析假設法:假設可能情況中的一種成立,然后按照這個假設去判斷,如果有與題設條件矛盾的情況,說明該假設情況是不成立的,那么與他的相反情況是成立的。例如,假設a是偶數成立,在判斷過程中出現了矛盾,那么a一定是奇數。條件分析列表法:當題設條件比較多
36、,需要多次假設才能完成時,就需要進行列表來輔助分析。列表法就是把題設的條件全部表示在一個長方形表格中,表格的行、列分別表示不同的對象與情況,觀察表格內的題設情況,運用邏輯規(guī)律進行判斷。條件分析圖表法:當兩個對象之間只有兩種關系時,就可用連線表示兩個對象之間的關系,有連線則表示“是,有”等肯定的狀態(tài),沒有連線則表示否定的狀態(tài)。例如A和B兩人之間有認識或不認識兩種狀態(tài),有連線表示認識,沒有表示不認識。邏輯計算:在推理的過程中除了要進行條件分析的推理之外,還要進行相應的計算,根據計算的結果為推理提供一個新的判斷篩選條件。簡單歸納與推理:根據題目提供的特征和數據,分析其中存在的規(guī)律和方法,并從特殊情況
37、推廣到一般情況,并遞推出相關的關系式,從而得到問題的解決。21 、小升初奧數知識點(幾何面積)基本思路:在一些面積的計算上,不能直接運用公式的情況下,一般需要對圖形進行割補,平移、旋轉、翻折、分解、變形、重疊等,使不規(guī)則的圖形變?yōu)橐?guī)則的圖形進行計算;另外需要掌握和記憶一些常規(guī)的面積規(guī)律。常用方法:1. 連輔助線方法2. 利用等底等高的兩個三角形面積相等。3. 大膽假設(有些點的設置題目中說的是任意點,解題時可把任意點設置在特殊位置上)。4. 利用特殊規(guī)律等腰直角三角形,已知任意一條邊都可求出面積。(斜邊的平方除以4等于等腰直角三角形的面積)梯形對角線連線后,兩腰部分面積相等。圓的面積占外接正方
38、形面積的78.5%。22 、小升初奧數知識點(時鐘問題快慢表問題)基本思路:1、按照行程問題中的思維方法解題;2、不同的表當成速度不同的運動物體;3、路程的單位是分格(表一周為60分格);4、時間是標準表所經過的時間;5、合理利用行程問題中的比例關系;23 、小升初奧數知識點(時鐘問題鐘面追及)基本思路:封閉曲線上的追及問題。關鍵問題:確定分針與時針的初始位置;確定分針與時針的路程差;基本方法:分格方法:時鐘的鐘面圓周被均勻分成60小格,每小格我們稱為1分格。分針每小時走60分格,即一周;而時針只走5分格,故分針每分鐘走1分格,時針每分鐘走112分格。度數方法:從角度觀點看,鐘面圓周一周是360°,分針每分鐘轉360/60 度,即6°,時針每分鐘轉360/12*60度,即1/2 度
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商業(yè)綜合體儲藏室所有權轉移協(xié)議
- 民營企業(yè)廠房租賃安全生產協(xié)議范本
- 涉及租賃房屋周邊商業(yè)配套的退房協(xié)議
- 房屋委托租房協(xié)議書范本
- 農產品集中采購合作協(xié)議
- 無人振搗機軌跡規(guī)劃
- 下肢深靜脈血栓治療與護理
- 2024年高考語文復習:宮苑類題材古代詩歌閱讀練習題(含答案解析)
- 制造客戶需求培訓
- 四有好老師教師培訓講座
- 【泉州:寒街孤影尋暖意 一抹亮色映霜花】中原地產2024年泉州樓市分析報告正式版
- 小學生反分裂課件
- 外科病房醫(yī)院感染防控工作職責
- DB34∕T 3262.2-2018 普通公路養(yǎng)護預算 第二部分:定額
- 2025年省定遠縣第三批“曲陽雁歸”工程公開招錄50名村(社區(qū))干部高頻重點提升(共500題)附帶答案詳解
- 旅游學概論(李天元)課件
- 大數據技術原理與應用-林子雨版-課后習題答案(文檔).文檔
- 醫(yī)院信息化網絡安全培訓
- 發(fā)電廠安全隱患排查
- 《特種設備安全管理員》考試通關題庫(600題 含參考答案)
- 油罐換底工程施工及方案
評論
0/150
提交評論