闡述分布式電源系統(tǒng)中直流母線電壓變換器的選擇與應(yīng)用_第1頁
闡述分布式電源系統(tǒng)中直流母線電壓變換器的選擇與應(yīng)用_第2頁
闡述分布式電源系統(tǒng)中直流母線電壓變換器的選擇與應(yīng)用_第3頁
闡述分布式電源系統(tǒng)中直流母線電壓變換器的選擇與應(yīng)用_第4頁
闡述分布式電源系統(tǒng)中直流母線電壓變換器的選擇與應(yīng)用_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、闡述分布式電源系統(tǒng)中直流母線電壓變換器的選擇與應(yīng)用            在電路板上分配電力的傳統(tǒng)方法基本上有兩種:第一種是把48 V變成3.3 V的輸出電壓,然后再用負(fù)載點(POL)變換器把3.3 V變換成負(fù)載點所需要的電壓。一般地說,在電路板上最需要的就是3.3 V,所以選擇3.3 V作為母線電壓,這樣做的益處是,只需要一次變換,不存在多級變換的方案中每級都存在的損耗。另外一個方法是,先把48 V變換為12 V,然后再把12 V的母線電壓變換成為負(fù)載點電壓,并不是直接把1

2、2 V送到負(fù)載上。這個方案比較適合功率較高的電路板使用。兩種分布式供電系統(tǒng)的結(jié)構(gòu)(DPA)如圖1所示。 這兩種分布式供電方案各有長處,也各有它的缺點。如果電路板上主要的負(fù)載需要3.3 V的工作電壓,而且在整個電路板上有多處需要3.3 V,在這種情況下,一般是采用母線電壓為3.3 V的分布式供電系統(tǒng)。之所以采用這個方案通常是為了減少電路板上兩級電壓轉(zhuǎn)換的數(shù)量,從而提高輸出功率最大的電源的效率。但是,在使用母線電壓為3.3 V的分布式供電系統(tǒng)時,它還為每個負(fù)載點變換器供給電力。這些負(fù)載點變換器產(chǎn)生其他負(fù)載所需要的工作電壓。另一個問題是,3.3 V輸出需要在電路中使用一只控制順序的FET晶體管。在線

3、路卡上,大多數(shù)工作電壓需要對接通電源和切斷電源的順序加以控制。 在這種分布式系統(tǒng)中,只能用電路中的順序控制FET晶體管來進(jìn)行控制。因為在隔離式轉(zhuǎn)換器中,沒有對輸出電壓的上升速度進(jìn)行控制。在電路中的順序控制FET晶體管只是在啟動和切斷電源時才用得上。在其他時間,這些FET晶體管存在直流損失,會影響效率,增加了元件數(shù)量,也提高了成本。由于工作電壓一年一年地在下降,在將來,工作電壓將下降到2.5 V。在電路板上功率同樣大的情況下,電流增大32 %,在配電方面的損失增大74 %左右。電路板上所有其他的工作電壓。在電路板上往往有其他輸出電壓都要由3.3 V的母線電壓經(jīng)過變換得到。往往需要幾個負(fù)載點輸出電

4、壓,每個輸出電壓可以使用高頻開關(guān)型直流/直流轉(zhuǎn)換器來產(chǎn)生。負(fù)載點轉(zhuǎn)換器的高頻開關(guān)會產(chǎn)生噪音,噪音會進(jìn)入3.3 V輸入線路。由于3.3 V是直接為負(fù)載供電的,所以需要很好的濾波器來保護(hù) 3.3 V的負(fù)載。專用集成電路(ASIC)是用3.3V母線電壓供電的,它對噪音十分敏感,如果輸入電壓沒有很好地濾波,有可能會損壞ASIC。ASIC的價錢很高,當(dāng)然極不希望出現(xiàn)這樣的事。如果電路板上需要很大功率,而且電路板上沒有那一種電壓的負(fù)載是占主要的,在這種情況下,一般是采用12V 分布式供電系統(tǒng)。采用這個方案時,在功率相同的情況下,由于電流較小,配電的損失降低了。對于這種供電方案,所有的工作電壓都是用負(fù)載點轉(zhuǎn)

5、換器來產(chǎn)生的。 在偏重于使用負(fù)載點轉(zhuǎn)換器的情況下,用12 V的分布式供電系統(tǒng)實現(xiàn)就容易得多。也可以用電路中的順序控制FET晶體管來控制負(fù)載點接通電源和切斷電源的順序,其中有一些可以由負(fù)載點本身來控制,這時就不需要控制順序的FET晶體管,也減少了直流損失。在市場上現(xiàn)在可以買到的輸出電壓為12 V的模塊,一般是功能齊全的磚塊型轉(zhuǎn)換器,它提供經(jīng)過穩(wěn)壓的12 V輸出電壓。 在磚塊型12 V轉(zhuǎn)換器中有反饋,通過一只光耦合器把反饋信號送回到轉(zhuǎn)換器的原邊。磚塊型12 V轉(zhuǎn)換器的有效值電流很大,次級需要額定電壓為40 V至100 V的FET晶體管,額定電壓較高的FET晶體管的Rds(on)高于額定電壓較低的F

6、ET晶體管的Rds(on),因而轉(zhuǎn)換器的效率比較低如果平均輸出電較低的話就可以用額定電壓較低的FET晶體管。在給定輸出功率的情況下,具有穩(wěn)壓作用的磚塊型轉(zhuǎn)換器往往相當(dāng)貴,而且體積大,因為在模塊內(nèi)有相當(dāng)多的元件。使用分布式的12 V母線電壓時,也會略微降低負(fù)載點轉(zhuǎn)換器的效率,因為輸入電壓直接影響負(fù)載點轉(zhuǎn)換器的開關(guān)損生。如圖2所示,在電路板上進(jìn)行配電,最好的方法是使用一個在3.3 V與12 V之間的中間電壓。在使用兩級功率轉(zhuǎn)換的情況下,這個中間母線電壓1 2 3 4 下一頁        

7、 不需要嚴(yán)格地進(jìn)行穩(wěn)壓。新型負(fù)載點轉(zhuǎn)換器的輸入電壓范圍很寬,這就是說,產(chǎn)生中間母線電壓的隔離式轉(zhuǎn)換器可以用比較簡單的方法來實現(xiàn)。對于負(fù)載點轉(zhuǎn)換器來講,最優(yōu)的輸入電壓介于6 V至8 V之間,這時,功率損失最小。就兩級轉(zhuǎn)換的優(yōu)化而言,這是最好的辦法,尤其是對于功率為 150 W的系統(tǒng)。結(jié)果我們可以在很小的面積中、用數(shù)量很少的元件,設(shè)計出一個高效率的隔離式轉(zhuǎn)換器。功能齊全的磚塊型轉(zhuǎn)換器使用的元件數(shù)量高達(dá)五十個還要多,整個設(shè)計不必要地變得十分復(fù)雜。如果把輸出電壓穩(wěn)壓電路去掉,可以大量地減少模塊中的元件數(shù)量。直流母線電壓轉(zhuǎn)換器使用隔離式轉(zhuǎn)換器,它工作在占空比為50 %的狀態(tài),因而可以使用比較簡

8、單、自行驅(qū)動的次級同步整流器,最大程度地提高了功率轉(zhuǎn)換的效率,也最大程度地減輕了對輸入電壓和輸出電壓濾波的要求,而且還提高了可靠性。 用于電路板的兩級功率轉(zhuǎn)換的未來發(fā)展直流母線電壓轉(zhuǎn)器是把48 V輸入變成中間母線電壓的新方法。中間母線電壓為負(fù)載點轉(zhuǎn)換器供電。做一個隔離式轉(zhuǎn)換器并不難,它是開環(huán)的,占空比固定為50 %,把48 V輸入電壓變?yōu)?8 V的中間母線電壓。它使用變比為3:1的變壓器,再通過初級半橋整流器得到輸入電壓與輸出電壓的比為6:1。由于現(xiàn)在有了作為第二級的負(fù)載點轉(zhuǎn)換器解決方案,例如 iPOWIRTM 技術(shù),它的輸入電壓范圍很寬,所以對于48 V系統(tǒng)來講,這個方法極有吸引力,它也可以

9、用于輸入電壓變化范圍很寬的系統(tǒng)(36 V 至75 V)。 當(dāng)輸入電壓在很寬范圍變化時,輸出電壓也以同樣的比率變化,所以如果輸入電壓在36 V至75V的范圍變化,輸出電壓的變化范圍就是6 V至12 V。直流母線轉(zhuǎn)換器作為前端電路加上作為第二級的iPOWIRTM,便構(gòu)成高效率的兩級功率轉(zhuǎn)換方案。直流母線轉(zhuǎn)換電路的效率最高、占的空間最小,在功率密度方面是最好的,大量地減少了元件數(shù)量,因而有利于降低總成本。這個方案對輸入濾波和輸出濾波的要求也是最低的,所以可以進(jìn)一步減少電容器和其他元件。這種電源系統(tǒng)的控制、監(jiān)控、同步以及順序控制都大大地簡化了。圖3是直流母轉(zhuǎn)換器設(shè)計的例子,其中使用了很有創(chuàng)意的新技術(shù),

10、因而可以達(dá)到這樣的性能。如圖4所示,可以利用直流母線轉(zhuǎn)換器解決方案來實現(xiàn)兩級供電系統(tǒng)。直流母線轉(zhuǎn)換器芯片組四周是原邊半橋整流器控制器和驅(qū)動器集成電路和MOSFET技術(shù),正是由于這個芯片組,才能達(dá)到這樣的性能。IR2085S是一種新的控制器集成電路,是針對用于電路板上48 V兩級配電系統(tǒng)的非穩(wěn)壓型隔離式直流母線電壓轉(zhuǎn)換器而研制的。控制器是針對性能、簡單、成本進(jìn)行了優(yōu)化的。它把一個占空比為50 %的時鐘與100 V、1 A的半橋整流器驅(qū)動器集成電路整合在一起,裝在一個SO-8封裝中。它的頻率和死區(qū)時間可以在外面進(jìn)行調(diào)節(jié),滿足各種應(yīng)用的要求。它還有限制電流的功能。為了限制接通電源時突然增大的電流,在

11、IR2085S里面有軟啟動功能,它控制占空比,由零慢慢地增加到50 %。在軟啟動過程中,一般持續(xù)2000個柵極驅(qū)動信號脈沖這么長時間。在 48 V的直流母線電壓轉(zhuǎn)換器演示板上有新的控制器集成電路與原邊的低電荷MOSFET晶體管,以及副邊的低導(dǎo)通電阻、熱性能提高了的MOSFET,它們配合在一起工作,在輸出電壓為8 V時可以提供150 W功率,效率超過96 %,如圖3所示,它的尺寸比1/8磚轉(zhuǎn)換器的外形尺寸還要小。與安裝在電路板上、具有穩(wěn)壓作用的常規(guī)功率轉(zhuǎn)換器相比,它的效率高35%,尺寸小40 %。有一種類似的方法可以用于全橋整流直流母線轉(zhuǎn)換器,它使用新的IR2085S,輸出功率達(dá)到240 W,尺

12、寸也相似,在輸出電流滿載時的效率大約為96.4 %。圖5是直流母線電壓轉(zhuǎn)換器的電路圖,在這個電路中,原邊使用控制器和驅(qū)動器集成電路IR2085S,它推動兩只 IRF7493 型FET晶體管這是新一代低電荷、80 V的n型溝道MOSFET功率晶體管上一頁  1 2 3 4 下一頁         ,它采用SO-8封裝。在輸入電壓為36 V至75 V時,這只 FET 晶體管可以換成100V的IRF7495FET 晶體管。在啟動時,原邊的偏置電壓是由一只線性穩(wěn)壓

13、器產(chǎn)生,在穩(wěn)態(tài)時,則由變壓器產(chǎn)生原邊偏置電壓。IRF7380中包含兩個80V的 n型溝道 MOSFET功率晶體管,采用SO-8封裝,就是用于在穩(wěn)態(tài)時產(chǎn)生原邊偏置電壓。 IRF6612或者 IRF6618這是使用DirectFET封裝的新型30V、 n型溝道 MOSFET功率晶體管,可以用于副邊的自驅(qū)動同步整流電路。DirectFET 半導(dǎo)體封裝技術(shù)實際上消除了MOSFET晶體管的封裝電阻,最大程度地提高了電路的效率,處于導(dǎo)通狀態(tài)時的總電阻很小。利用DirectFET 封裝技術(shù),它到印刷電路板的熱阻極小,大約是1°C/W,DirectFET器件的半導(dǎo)體結(jié)至頂部(外殼)的熱阻大約是 1.

14、4°C/W。 IRF6612 或者IRF6618的柵極驅(qū)動電壓限制在最優(yōu)的數(shù)值7.5V ,與包含兩個 30V、使用 SO-8 封裝的MOSFET晶體管IRF9956一樣。副邊的偏置電路是為了把兩個直流母線轉(zhuǎn)換器的輸出并聯(lián)起來,而它們的輸入電壓是不同的,而且在其中一個輸入出現(xiàn)短路或者切斷的情況下,仍然可以連續(xù)地提供輸出功率。 功率為150W 的直流母線轉(zhuǎn)換器的尺寸可以做到是1.95 × 0.85英寸,比符合工業(yè)標(biāo)準(zhǔn)的1/8磚還小,1/8磚的標(biāo)準(zhǔn)尺寸是2.30 × 0.90英寸,小了25%。有一些功能齊全的解決方案現(xiàn)在有尺寸為1/4磚的產(chǎn)品,它的標(biāo)準(zhǔn)尺寸是2.30 &

15、#215; 1.45英寸,如果使用直流母線轉(zhuǎn)換器,可節(jié)省空間53%。如圖6所示,在尺寸這么小的空間里,在功率為150 W時,直流母線轉(zhuǎn)換器芯片組的效率高達(dá)96%左右。 為了讓大家看到直流母線電壓器的優(yōu)異性能,我們選擇原邊開關(guān)頻率為220 kHz。使用較高的開關(guān)頻率,可以減少輸出電壓的脈動,而且,由于磁通密降低了,可以使用比較小的磁性元件。變壓器的磁芯比較小,損耗也降低了。但是,由于開關(guān)頻率較高,增加了原邊和副邊的開關(guān)損失,因而降低了整個電路的效率。磁通不平衡是橋式電路的一個問題,為了防止磁通不平衡,高壓邊和低壓邊的脈沖寬度之差不到25 ns。針對不同的應(yīng)用、不同的輸出功率和不同的開關(guān)器件,頻率

16、以及驅(qū)動半橋整流電路的低壓邊脈沖和高壓邊脈沖之間的死區(qū)時間是可以調(diào)節(jié)的,這是利用外面的定時電容器來實現(xiàn)的。在兩級分布式供電系統(tǒng)中,直流母線轉(zhuǎn)換器是前置級。在對作為第二級的非隔離式負(fù)載點轉(zhuǎn)換器進(jìn)行優(yōu)化時,也有許多獨特的問題需要考慮到。在主要關(guān)注的是電路板的空間以及設(shè)計的復(fù)雜程度的情況下,與完整的模塊或完全用分立元件的設(shè)計比較,使用嵌入式功能塊的設(shè)計有很多優(yōu)點。如圖4所示,設(shè)計人員可以利用新的iPOWIRTM iP1202功能塊周圍的那些外部元件,很快地而且很容易地制造一個高性能的兩路輸出的兩相同步降壓轉(zhuǎn)換器,為幾個負(fù)載供電。除了設(shè)計人員可以更容易地進(jìn)行設(shè)計,與使用分立元件的同類設(shè)計相比,這種使用

17、功能塊的設(shè)計可以為電腦板節(jié)省空間50 %,同時大大地縮短設(shè)計時間。供工程師使用的這些器件是百分之百經(jīng)過測試、性能是有保證的,而且用這種器件時,電路板的設(shè)計不像使用分立元件進(jìn)行設(shè)計時那么復(fù)雜。用分立元件進(jìn)行設(shè)計時,這些是不可能做到的。此外,它的轉(zhuǎn)換效率很高,而且十分靈活,可以很容易地用它為需要不同電壓的其他負(fù)載供電。 簡單的解決方案 為了提供能夠解決上述問題的解決方案,并且還具所需要的功能,國際整流器公司把它先進(jìn)的iPOWIR 封裝技術(shù)用于制造一種集成功能塊。國際整流器公司運用它在功率系統(tǒng)設(shè)計和芯片組方面的專業(yè)知識,把 PWM 控制器和驅(qū)動器以及相應(yīng)的控制MOSFET開關(guān)和同步MOSFET 開關(guān)

18、、肖特基二極管和輸入旁通電容器都整合在一個封裝之中。為了提高性能,在這單一封裝的模塊中,上一頁  1 2 3 4 下一頁         功率元件匹配得很好,電路的布置進(jìn)行了最優(yōu)化設(shè)計。得到的結(jié)果是,這個器件可以當(dāng)作基本功能塊用于設(shè)計高性能的兩路同步降壓轉(zhuǎn)換器。在完整的兩路輸出電源所需要的外部元件是輸出電感器、輸出電容器、輸入電容器(圖7a),加上幾只其他的無源元件。因為內(nèi)部電路是與固定頻率的電壓型控制信號同步的,可以很容易地把兩路輸出并聯(lián)起來作為一路電壓

19、輸出,而輸出供電流的能力則增大一倍(圖7b)。 在單輸出或者并聯(lián)輸出的電路中,使用相位相差 180°的工作方式,脈動的頻率提高了,它的優(yōu)點是,可以減少外部元件的數(shù)量和尺寸。 iP1202可以直接由直流母線轉(zhuǎn)換器的輸出電壓供給電力,外面不需要偏置電路,又進(jìn)一步減少了外部元件,也降低了設(shè)計的復(fù)雜程度。新的功能塊的尺寸是9.25 mm × 15.5 mm × 2.6 mm ,可以為設(shè)計人員節(jié)省十分寶貴的電路板空間,并且提高了功率密度這是一個很有價值的貢獻(xiàn)。 iP1202的每一個通道都使用簡單的電阻分壓電路,它的各路輸出電壓可以獨立地進(jìn)行調(diào)節(jié),輸入工作電壓的范圍從5.5 V至13.2 V,作為前端電路的直流母線電壓轉(zhuǎn)換器為它供電是很

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論