版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上2016年六年級畢業(yè)班數(shù)學復(fù)習資料常用的數(shù)量關(guān)系式1、每份數(shù)×份數(shù)總數(shù) 總數(shù)÷每份數(shù)份數(shù) 總數(shù)÷份數(shù)每份數(shù) 2、1倍數(shù)×倍數(shù)幾倍數(shù) 幾倍數(shù)÷1倍數(shù)倍數(shù) 幾倍數(shù)÷倍數(shù)1倍數(shù) 3、速度×時間路程 路程÷速度時間 路程÷時間速度 4、單價×數(shù)量總價 總價÷單價數(shù)量 總價÷數(shù)量單價 5、工作效率×工作時間工作總量 工作總量÷工作效率工作時間 工作總量÷工作時間工作效率 6、加數(shù)加數(shù)和 和一個加數(shù)另一個加數(shù)7、被減數(shù)減數(shù)差 被減數(shù)
2、差減數(shù) 差減數(shù)被減數(shù) 8、因數(shù)×因數(shù)積 積÷一個因數(shù)另一個因數(shù) 9、被除數(shù)÷除數(shù)商 被除數(shù)÷商除數(shù) 商×除數(shù)被除數(shù)解方程方法一:消項(如果消3,方程兩邊就同時3 ;如果消×3,方程兩邊就同時÷3)1:把方程里的“括號”全部去掉,兩種去括號的方法任選其一 2:如果兩邊都有 幾 , 要先消去其中一邊的 幾 (如果有“-幾”,就把“-幾”消去,如果沒有“-幾”,就把較小的消去掉)3:消去 “-幾”, 消去“÷” 4:把這邊的數(shù)字全部消掉,先消“+ -” 再消“÷” 最后消“×” (注意:無論解到哪一步
3、,數(shù)字+幾 都要寫成 幾+數(shù)字) 解方程方法二:移項(3移到另一邊就變成3,×3移到另一邊就變成÷3) 1:把方程里的“括號”全部去掉,兩種去括號的方法任選其一 2:如果兩邊都有 幾 ,就把其中一邊的 幾 移到另一邊 (如果有“-幾”,就把“-幾”移到另一邊。如果沒有“-幾”,就把較小的移到另一邊)3:把“-幾”移到另一邊,把 “÷”移到另一邊”4:把這邊的數(shù)字全部移到另一邊,先移“+ -” 再移“÷” 最后移“×” (注意:無論解到哪一步,數(shù)字+幾 都要寫成 幾+數(shù)字) 小學數(shù)學圖形計算公式 1、正方形 (C:周長 S:面積 a:邊長 )周長
4、邊長×4 C=4a 面積=邊長×邊長 S=a×a 2、正方體 (V:體積 a:棱長 )表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a 3、長方形( C:周長 S:面積 a:邊長 )周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab 4、長方體 (V:體積 S:面積 a:長 b: 寬 h:高)(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長
5、15;寬×高 V=abh 5、三角形 (S:面積 a:底 h:高) 面積=底×高÷2 S=ah÷2 三角形的高=面積 ×2÷底 三角形的底=面積 ×2÷高 6、平行四邊形 (S:面積 a:底 h:高) 面積=底×高 S=ah 7、梯形 (S:面積 、 、 b:下底 、 h:高) 面積=(上底+下底)×高÷2 、 S=(a+b)× h÷8、圓形 (S:面積 、 C:周長 、 :圓周率 、 d=直徑 、 r=半徑) (1)周長=直徑×=2××
6、;半徑 、 C=d=2r (2)面積=半徑×半徑× 、 S=r² (3)半圓周長=r(+2) (4)圓周長的一半=r (5)S環(huán)=(R²-r²) (6)S扇=r²9、圓柱體 (V:體積 、 、 S:底面積 、 r:底面半徑 、 C:底面周長) (1)側(cè)面積=底面周長×高=Ch(2r或d) (2)表面積=側(cè)面積+底面積×2 (3)體積=底面積×高 (4)體積側(cè)面積÷2×半徑10、圓錐體 (V:體積 、 h:高 、 S:底面積 、 r:底面半徑) 體積=底面積×高÷3
7、11、總數(shù)÷總份數(shù)平均數(shù) 12、和差問題的公式 (和差)÷2大數(shù) (和差)÷2小數(shù) 13、和倍問題 和÷(倍數(shù)1)小數(shù) 小數(shù)×倍數(shù)大數(shù) (或者 和小數(shù)大數(shù))14、差倍問題 差÷(倍數(shù)1)小數(shù) 小數(shù)×倍數(shù)大數(shù) (或 小數(shù)差大數(shù)) 15、相遇問題 = 3.14 2 = 6.28 3 = 9.42 4 = 12.56 5 = 15.7相遇路程速度6 = 18.84 7 = 21.98 8 = 25.12 9 = 28.26 10 = 31.4相遇時間相遇路程÷速度和16 = 50.24 25 = 78.5 36 = 11
8、3.04 49 =153.86速度和相遇路程÷相遇時間 64 = 200.96 81= 254.34 100 = 31416、追及問題 追及距離速度差×追及時間= 121 12² = 144 13² = 169 14² = 196 15² = 225追及時間追及距離÷速² = 256 17² = 289 18² = 324 19² = 361 20²=400速度差追及距離÷追及時間 17流水問題順流速度靜水速度水流速度 =0.5=50% =0.2=20% =0.12
9、5=12.5%逆流速度靜水速度水流速度 =0.25=25% =0.4=40% =0.375=37.5%靜水速度(順流速度逆流速度)÷2 =0.75=75% =0.6=60% =0.625=62.5%水流速度(順流速度逆流速度)÷2 =0.0625=6.25% =0.8=80% =0.875= 87.5%18、濃度問題 =0.05= 5 =0.04= 4 =0.02=2溶質(zhì)的重量溶劑的重量 溶質(zhì)的重量÷溶液的重量×100%濃度 溶液的重量×濃度溶質(zhì)的重量 溶質(zhì)的重量÷濃度溶液的重量19、利潤與折扣問題 利潤 成本 利潤率 利潤÷
10、;成本×100%(售出價÷成本1)×100% 漲跌金額本金×漲跌百分比 利息 本金×利率×時間 稅后利息本金×利率×時間×(120%)20、植樹問題 非封閉線路上的植樹問題主要可分為以下三種情形:如果在非封閉線路的兩端都要植樹,那么: 株數(shù)=段數(shù)+1=全長÷株距+1 全長=株距×(株數(shù)-1) 株距=全長÷(株數(shù)-1)如果在非封閉線路的一端要植樹,另一端不要植樹,那么:株數(shù)=段數(shù)=全長÷株距 全長=株距×株數(shù) 株距=全長÷株數(shù) 如果在非封閉線路的兩
11、端都不要植樹,那么: 株數(shù)=段數(shù)-1=全長÷株距-1 全長=株距×(株數(shù)+1) 株距=全長÷(株數(shù)+1) 封閉線路上(例如圍成一個圓形、橢圓形)的植樹問題的數(shù)量關(guān)系如下 株數(shù)=段數(shù)=全長÷株距 全長=株距×株數(shù) 株距=全長÷株數(shù) 鋸木問題:段數(shù)次數(shù)1 次數(shù)段數(shù)1 總時間每次時間×次數(shù) 實心方陣:最外層的人數(shù)是=(每邊人數(shù)-1)×4 每邊人數(shù)=最外層的人數(shù)÷4+1整個方陣的總?cè)藬?shù)是=每邊人數(shù)×每邊人數(shù)空心方陣:總?cè)藬?shù)=(最外層每邊人數(shù)-空心方陣的層數(shù))×空心方陣的層數(shù)×4 內(nèi)層
12、總?cè)藬?shù)=最外層總?cè)藬?shù)-層數(shù)×4多邊陣 :最外層的人數(shù)是=(每邊人數(shù)-1)×邊數(shù) 或 每邊人數(shù)×邊數(shù)-邊數(shù) 21、雞兔同籠已知總頭數(shù)和總腳數(shù),求雞、兔各多少:(總腳數(shù)-每只雞的腳數(shù)×總頭數(shù))÷(每只兔的腳數(shù)-每只雞的腳數(shù))=兔數(shù)得失問題(雞兔問題的推廣題)的解法,可以用下面的公式:(每只合格品得分數(shù)×產(chǎn)品總數(shù)-實得總分數(shù))÷(每只合格品得分數(shù)+每只不合格品扣分數(shù)=不合格品數(shù) 常用單位換算 長度單位換算 km m dm cm mm 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米面積單位換
13、算 km² m² dm² cm² mm²1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 體(容)積單位換算 L mL m³ dm³ cm³1立方米=1000立方分米 1立方分米=1000立方厘米 1升=1000毫升1立方米=1000升 1立方分米=1升 1立方厘米=1毫升 質(zhì)量單位換算 t k 1噸=1000 千克 1千克=1000克 1千克=1公斤 人民幣單位換算 1元=10角 1角=10分 1元=100分 時間單位換算 h mi
14、n s1世紀=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月 平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1時=60分 1分=60秒 1時=3600秒 簡便運算常見乘法計算(敏感數(shù)字) :25×4100 125×81000加法交換律簡算例子 加法結(jié)合律簡算例子 乘法交換律簡算例子 乘法結(jié)合律簡算例子 0.875+ +0.8 0.4×33× 23×0.375×=+ =+ =×33× =23××=+ =+(
15、+) =××33 =23 ×(×)=1+ =+1 =1×3 =23×2含加法交換律與結(jié)合律 含乘法交換律與結(jié)合律 數(shù)字換減法式 數(shù)字換加法式 0.875+ 0.375××× 35× 101×=+ =××× = (36-1) × = (100+1) ×=+ + =××× =36×-1× =100×+1×= (+)+ (+) = (×)×(×
16、) =5- =1+=1+1 =2×1 乘法分配律提取式 乘法分配律提取式 乘法分配律(添項) 乘法分配律(添項) 101×0. 95.5÷1.6-15.5÷1.6 101×0.9- 52×+29×-0.625 =101×-×1 =(95.5-15.5)÷1.6 =101×- =52×+29×- =101×-1× =80÷1.6 =101×-1× =52×+29×-1× =(101-1)
17、× =800÷16 =(101-1) × =(52+29-1)× =100× =100× =80× 減法的性質(zhì)簡算例子 減法的性質(zhì)簡算例子 減法的性質(zhì)簡算例子 數(shù)字換乘法式18-0.375 1-0.75 12-(+0.4) 0.56×125=18- =1- =12-(+) =0.7×0.8×125=18-(+) =1- =12- =0.7×(0.8×125)=18-1 =1- =12- =0.7×100除法的性質(zhì)簡算例子 除法的性質(zhì)簡算例子 除法的性質(zhì)簡算例子 數(shù)字
18、換乘法式3200÷2.5÷0.4 2700÷2.5÷2.7 5900÷(2.5×5.9) 33333×33333=3200÷(2.5×0.4) =2700÷2.7÷2.5 =5900÷5.9÷2.5 =11111×3×33333=3200÷1 =1000÷2.5 =1000÷2.5 =11111×99999同級運算中,第一個數(shù)不能動,后面的數(shù)可以帶著符號搬家 =11111×(-1)1+- 250&
19、#247;0.8×0.4 1-+ 29×0.25÷0.29=1-+ =250×0.4÷0.8 =1+- =29÷0.29×0.25=1+ =100÷0.8 =2- =100×0.25基本概念 第一章 數(shù)和數(shù)的運算 一 概念 (一)整數(shù) 1.自然數(shù)、負數(shù)和整數(shù) (1)自然數(shù):我們在數(shù)物體的時候,用來表示物體個數(shù)的1,2,3叫做自然數(shù)。一個物體也沒有,用0表示。0也是自然數(shù)。 1是自然數(shù)的基本單位。任何一個自然數(shù)都是由若干個1組成。零是最小的自然數(shù),沒有最大的自然數(shù)。(2) 負數(shù):在正數(shù)前面加上“”的數(shù)叫做負
20、數(shù),“”叫做負號 (3) 0即不是正數(shù),也不是負數(shù)。(4)零的作用:表示位數(shù)。讀寫數(shù)時,某個數(shù)位上一個單位也沒有,就用零表示。占位作用。作為界限。如“零上溫度與零下溫度的分界”。2.計數(shù)單位 一(個)、十、百、千、萬、十萬、百萬、千萬、億都是計數(shù)單位。 每相鄰兩個計數(shù)單位之間的進率都是10。這樣的計數(shù)法叫做十進制計數(shù)法。 3.數(shù)位 計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。 4.數(shù)的整除 整數(shù)a除以整數(shù)b(b 0),除得的商是整數(shù)而沒有余數(shù),我們就說a能被b整除,或者說b能整除a 。如果數(shù)a能被數(shù)b(b 0)整除,a就叫做b的倍數(shù),b就叫做a因數(shù)。倍數(shù)和因數(shù)是相互依存的。因為35
21、能被7整除,所以35是7的倍數(shù),7是35的因數(shù)。 一個數(shù)的因數(shù)的個數(shù)是有限的,其中最小的因數(shù)是1,最大的因數(shù)是它本身。例如:10的因數(shù)有1、2、5、10,其中最小的因數(shù)是1,最大的因數(shù)是10。 一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身。例如:3的倍數(shù)有:3、6、9、12其中最小的倍數(shù)是3 ,沒有最大的倍數(shù)。 個位上是0、2、4、6、8的數(shù),都能被2整除,例如:202、480、304,都能被2整除。 個位上是0或5的數(shù),都能被5整除,例如:5、30、405都能被5整除。 一個數(shù)的各位上的數(shù)的和能被3整除,這個數(shù)就能被3整除,例如:12、108、204都能被3整除。 一個數(shù)各位數(shù)上的和能
22、被9整除,這個數(shù)就能被9整除。 能被3整除的數(shù)不一定能被9整除,但是能被9整除的數(shù)一定能被3整除。 一個數(shù)的末兩位數(shù)能被4(或25)整除,這個數(shù)就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。 一個數(shù)的末三位數(shù)能被8(或125)整除,這個數(shù)就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。 能被2整除的數(shù)叫做偶數(shù)。 不能被2整除的數(shù)叫做奇數(shù)。 0也是偶數(shù)。自然數(shù)按能否被2 整除的特征可分為奇數(shù)和偶數(shù)。 一個數(shù),如果只有1和它本身兩個因數(shù),這樣的數(shù)叫
23、做質(zhì)數(shù)(或素數(shù)),100以內(nèi)的質(zhì)數(shù)有:2、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 一個數(shù),如果除了1和它本身還有別的因數(shù),這樣的數(shù)叫做合數(shù),例如 :4、6、8、9、12都是合數(shù)。 1不是質(zhì)數(shù)也不是合數(shù),自然數(shù)除了1外,不是質(zhì)數(shù)就是合數(shù)。如果把自然數(shù)按其因數(shù)的個數(shù)的不同分類,可分為質(zhì)數(shù)、合數(shù)和1。 每個合數(shù)都可以寫成幾個質(zhì)數(shù)相乘的形式。其中每個質(zhì)數(shù)都是這個合數(shù)的因數(shù),叫做這個合數(shù)的質(zhì)因數(shù),例如:15=3×5,3和5 叫做15的質(zhì)因數(shù)。 把一個合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。 例如:把
24、28分解質(zhì)因數(shù) 幾個數(shù)公有的因數(shù),叫做這幾。其中最大的一個,叫做這幾個數(shù)的最大公因數(shù),例如:12的因數(shù)有1、2、3、4、6、12;18的因數(shù)有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因數(shù),6是它們的最大公因數(shù)。 公因數(shù)只有1的兩個數(shù),叫做互質(zhì)數(shù),成互質(zhì)關(guān)系的兩個數(shù),有下列幾種情況: 1和任何自然數(shù)互質(zhì)。 相鄰的兩個自然數(shù)互質(zhì)。 兩個不同的質(zhì)數(shù)互質(zhì)。 當合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì)。 兩個合數(shù)的公因數(shù)只有1時,這兩個合數(shù)互質(zhì),如果幾個數(shù)中任意兩個都互質(zhì),就說這幾個數(shù)兩兩互質(zhì)。 如果較小數(shù)是較大數(shù)的因數(shù),那么較小數(shù)就是這兩個數(shù)的最大公因數(shù)。 如果兩個數(shù)是互質(zhì)
25、數(shù),它們的最大公因數(shù)就是1。 幾個數(shù)公有的倍數(shù),的公倍數(shù),其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù),例如:2的倍數(shù)有2、4、6 、8、10、12、14、16、18 3的倍數(shù)有3、6、9、12、15、18 其中6、12、18是2、3的公倍數(shù),6是它們的最小公倍數(shù)。 如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個數(shù)的最小公倍數(shù)。如果兩個數(shù)是互質(zhì)數(shù),那么這兩個數(shù)的積就是它們的最小公倍數(shù)。 幾個數(shù)的公因數(shù)的個數(shù)是有限的,而幾個數(shù)的公倍數(shù)的個數(shù)是無限的。 (二)小數(shù) 1 小數(shù)的意義 把整數(shù)1平均分成10份、100份、1000份 得到的十分之幾、百分之幾、千分之幾 可以用小數(shù)表示。 一位小數(shù)表示十分之幾,
26、兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾 一個小數(shù)由整數(shù)部分、小數(shù)部分組成。數(shù)中的圓點叫做小數(shù)點,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點右邊的數(shù)叫做小數(shù)部分。 在小數(shù)里,每相鄰兩個計數(shù)單位之間的進率都是10。小數(shù)部分的最高分數(shù)單位“十分之一”和整數(shù)部分的最低單位“一”之間的進率也是10。 2小數(shù)的分類 純小數(shù):整數(shù)部分是零的小數(shù),叫做純小數(shù)。例如: 0.25 、 0.368 都是純小數(shù)。 帶小數(shù):整數(shù)部分不是零的小數(shù),叫做帶小數(shù)。 例如: 3.25 、 5.26 都是帶小數(shù)。 有限小數(shù):小數(shù)部分的數(shù)位是有限的小數(shù),叫做有限小數(shù)。 例如: 41.7 、 25.3 、 0
27、.23 都是有限小數(shù)。 無限小數(shù):小數(shù)部分的數(shù)位是無限的小數(shù),叫做無限小數(shù)。 例如: 4.33 3. 無限不循環(huán)小數(shù):一個數(shù)的小數(shù)部分,數(shù)字排列無規(guī)律且位數(shù)無限,這樣的小數(shù)叫做無限不循環(huán)小數(shù)。 例如: 循環(huán)小數(shù):一個數(shù)的小數(shù)部分,有幾個數(shù)字依次不斷重復(fù)出現(xiàn),這個數(shù)叫做循環(huán)小數(shù)。 例如: 3.555 0.0333 12. 一個循環(huán)小數(shù)的小不斷重復(fù)出現(xiàn)的數(shù)字叫做這個循環(huán)小數(shù)的循環(huán)節(jié)。 例如: 3.99 的循環(huán)節(jié)是“ 9 ” , 0.5454 的循環(huán)節(jié)是“ 54 ” 。 純循環(huán)小數(shù):循環(huán)節(jié)從小數(shù)部分第一位開始的,叫做純循環(huán)小數(shù)。 例如: 3.111 0.5656 混循環(huán)小數(shù):循環(huán)節(jié)不是從小數(shù)部分第一
28、位開始的,叫做混循環(huán)小數(shù)。 3.1222 0.03333 寫循環(huán)小數(shù)的時候,為了簡便部分只需寫出一個循環(huán)節(jié),并在這個循環(huán)節(jié)的首、末位數(shù)字上各點一個圓點。如果循環(huán) 節(jié)只有 一個數(shù)字,就只在它的上面點一個點。例如: 3.777 簡寫作 : 0. 簡寫作 : (三)分數(shù) 1 分數(shù)的意義 把單位“1”平均分成若干份,表示這樣的一份或者幾份的數(shù)叫做分數(shù)。 在分數(shù)里,中間的橫線叫做分數(shù)線;分數(shù)線下面的數(shù),叫做分母,表示把單位“1”平均分成多少份;分數(shù)線下面的數(shù)叫做分子,表示有這樣的多少份。 把單位“1”平均分成若干份,表示其中的一份的數(shù),叫做分數(shù)單位。 2 分數(shù)的分類 真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)
29、。真分數(shù)小于1。 假分數(shù):分子比分母大或者分子和分母相等的分數(shù),叫做假分數(shù)。假分數(shù)大于或等于1。 帶分數(shù):假分數(shù)可以寫成整數(shù)與真分數(shù)合成的數(shù),通常叫做帶分數(shù)。 3 約分和通分 把一個分數(shù)化成同它相等但是分子、分母都比較小的分數(shù) ,叫做約分。 分子分母是互質(zhì)數(shù)的分數(shù),叫做最簡分數(shù)。 把異分母分數(shù)分別化成和原來分數(shù)相等的同分母分數(shù),叫做通分。 (四)百分數(shù) 表示一個數(shù)是另一個數(shù)的百分之幾的數(shù) 叫做百分數(shù),也叫做百分率 或百分比。百分數(shù)通常用"%"來表示。百分號是表示百分數(shù)的符號。 二 方法 (一)數(shù)的讀法和寫法 1. 整數(shù)的讀法:從高位到級地讀。讀億級、萬級時,先按照個級的讀法
30、去讀,再在后面加一個“億”或“萬”字。每一級末尾的0都不讀出來,其它數(shù)位連續(xù)有幾個0都只讀一個零。 2. 整數(shù)的寫法:從高位到低位,一級一級地寫,哪一個數(shù)位上一個單位也沒有,就在那個數(shù)位上寫0。 3. 小數(shù)的讀法:讀小數(shù)的時候,整數(shù)部分按照整數(shù)的讀法讀,小數(shù)點讀作“點”,小數(shù)部分從左向右順次讀出每一位數(shù)位上的數(shù)字。 4. 小數(shù)的寫法:寫小數(shù)的時候,整數(shù)部分按照整數(shù)的寫法來寫,小數(shù)點寫在個位右下角,小數(shù)部分順次寫出每一個數(shù)位上的數(shù)字。5. 分數(shù)的讀法:讀分數(shù)時,先讀分母再讀“分之”然后讀分子,分子和分母按照整數(shù)的讀法來讀。 6. 分數(shù)的寫法:先寫分數(shù)線,再寫分母,最后寫分子,按照整數(shù)的寫法來寫。
31、 7. 百分數(shù)的讀法:讀百分數(shù)時,先讀百分之,再讀百分號前面的數(shù),讀數(shù)時按照整數(shù)的讀法來讀。 8. 百分數(shù)的寫法:百分數(shù)通常不寫成分數(shù)形式,而在原來的分子后面加上百分號“%”來表示。 (二)數(shù)的改寫 一個較大的多位數(shù),為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數(shù)。有時還可以根據(jù)需要,省略這個數(shù)某一位后面的數(shù),寫成近似數(shù)。 1. 準確數(shù):在實際生活中,便,可以把一個較大的數(shù)改寫成以萬或億為單位的數(shù)。改寫后的數(shù)是原數(shù)的準確數(shù)。 例如把 改寫成以萬做單位的數(shù)是 萬;改寫成 以億做單位 的數(shù) 12.543 億。 2. 近似數(shù):根據(jù)實際需要,我們較大的數(shù),省略某一位后面的尾數(shù),用一個近似數(shù)來表
32、示。 例如: 省略億后面的尾數(shù)是 13 億。 3. 四舍五入法:要省略位上的數(shù)是4 或者比4小,就把尾數(shù)去掉;如果尾數(shù)的最高位上的數(shù)是5或者比5大,就把尾數(shù)舍去,并向它的前一位進1。例如:省略 萬后面的尾數(shù)約是 35 萬。省略 億后面的尾數(shù)約是 47 億。 4. 大小比較 (1). 比較整數(shù)大?。罕?,位數(shù)多的那個數(shù)就大,如果位數(shù)相同,就看最高位,最高位上的數(shù)大,那個數(shù)就大;最高位上的數(shù)相同,就看下一位,哪一位上的數(shù)大那個數(shù)就大。 (2). 比較小數(shù)的大?。合炔糠?,整數(shù)部分大的那個數(shù)就大;整數(shù)部分相同的,十分位上的數(shù)大的那個數(shù)就大;十分位上的數(shù)也相同的,百分位上的數(shù)大的那個數(shù)就大 (3). 比較
33、分數(shù)的大的分數(shù),分子大的分數(shù)比較大;分子相同的數(shù),分母小的分數(shù)大。分數(shù)的分母和分子都不相同的,先通分,再比較兩個數(shù)的大小。 (三)數(shù)的互化 1. 小數(shù)化成分數(shù):原來有幾位小數(shù),就在1的后面寫幾個零作分母,把原來的小數(shù)去掉小數(shù)點作分子,能約分的要約分。 2. 分數(shù)化成小數(shù):用分母去除分子。能除盡的就化成有限小數(shù),有的不能除盡,不能化成有限小數(shù)的,一般保留三位小數(shù)。 3. 一個最簡分數(shù),如果和5以外,不含有其他的質(zhì)因數(shù),這個分數(shù)就能化成有限小數(shù);如果分母中含有2和5 以外的質(zhì)因數(shù),這個分數(shù)就不能化成有限小數(shù)。 4. 小數(shù)化成百分數(shù):只要把小數(shù)點向右移動兩位,同時在后面添上百分號。 5. 百分數(shù)化成
34、小數(shù):把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。 6. 分數(shù)化成百分數(shù):通常先把分數(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分數(shù)。 7. 百分數(shù)化成小數(shù):先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。 (四)數(shù)的整除 1. 把一個合數(shù)分解質(zhì)因數(shù),通常用短除法。先用能整除這個合數(shù)的質(zhì)數(shù)去除,一直除到商是質(zhì)數(shù)為止,再把除數(shù)和商寫成連乘的形式。 2. 求幾個數(shù)的最大公因數(shù)用這幾個數(shù)的公因數(shù)連續(xù)去除,一直除到所得的商只有公因數(shù)1為止,然后把所有的除數(shù)連乘求積,這個積就是這幾個數(shù)的的最大公因數(shù) 。 3. 求幾個數(shù)的方法是:先用這幾個數(shù)(或其中的部分數(shù))的公因數(shù)去除,一直
35、除到互質(zhì)(或兩兩互質(zhì))為止,然后把所有的除數(shù)和商連乘求積,這個積就是這幾個數(shù)的最小公倍數(shù)。 4. 成為互質(zhì):1和任何自然數(shù)互質(zhì) ; 相鄰的兩個自然數(shù)互質(zhì); 當合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì); 兩個合數(shù)的公因數(shù)只有1時,這兩個合數(shù)互質(zhì)。 (五) 約分和通分 約分的方法:用分子和分母的公因數(shù)(1除外)去除分子、分母;通常要除到得出最簡分數(shù)為止。 通分的方法:先求出原來的幾個分數(shù)分母的最小公倍數(shù),然后把各分數(shù)化成用這個最小公倍數(shù)作分母的分數(shù)。三 性質(zhì)和規(guī)律 (一)規(guī)律一個數(shù)(0除外)乘大于1的數(shù), 積大于這個數(shù)。一個數(shù)(0除外)乘小于1的數(shù)(0除外),積小于這個數(shù)。一個數(shù)(0除外)乘1
36、, 積等于這個數(shù)。商不變的規(guī)律:在除法里,被除數(shù)和除數(shù)同時擴大或者同時縮小相同的倍,商不變。兩數(shù)相除,除數(shù)不變,被除數(shù)擴大或縮小幾倍,商也隨著擴大或縮小幾倍。兩數(shù)相除,被除數(shù)不變,除數(shù)擴大幾倍,商就縮小幾倍。兩數(shù)相除,被除數(shù)不變,除數(shù)縮小幾倍,商就擴大幾倍?!緛碓矗?1cnj*y.co*m】一個數(shù)(0除外)除以大于1的數(shù), 商小于被除數(shù)一個數(shù)(0除外)除以1, 商等于被除數(shù)一個數(shù)(0除外)除以小于1的數(shù)(0除外), 商大于被除數(shù)(二)小數(shù)的性質(zhì) 小數(shù)的性質(zhì):在小數(shù)的末尾添上零或者去掉零小數(shù)的大小不變。 (三)小數(shù)點位置的移動引起小數(shù)大小的變化 1. 小數(shù)點向右移動一位,原來0倍;小數(shù)點向右移動
37、兩位,原來的數(shù)就擴大100倍;小數(shù)點向右移動三位,原來的數(shù)就擴大1000倍 2. 小數(shù)點向左移動一位,原來的倍;小數(shù)點向左移動兩位,原來的數(shù)就縮小100倍;小數(shù)點向左移動三位,原來的數(shù)就縮小1000倍 3. 小數(shù)點向左移或者向右移位數(shù)不夠時,要用“0”補足位。 (四)分數(shù)的基本性質(zhì) 分數(shù)的基本性質(zhì):分數(shù)的分子和分母都乘以或者除以相同的數(shù)(零除外),分數(shù)的大小不變。 (五)分數(shù)與除法的關(guān)系 1. 被除數(shù)÷除數(shù)= 2. 因為零不能作除數(shù),所以分數(shù)的分母不能為零。 3. 被除數(shù) 相當于分子,除數(shù)相當于分母。 四 運算的意義 (一)整數(shù)四則運算 1整數(shù)加法:把兩個數(shù)合并成一個數(shù)的運算叫做加法
38、。 在加法里,相加的數(shù)叫做加數(shù),加得的數(shù)叫做和。加數(shù)是部分數(shù),和是總數(shù)。 加數(shù)+加數(shù)=和 一個加數(shù)=和另一個加數(shù) 2整數(shù)減法:已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算叫做減法。 在減法里,已知的和叫做被減數(shù),已知的加數(shù)叫做減數(shù),未知的加數(shù)叫做差。被減數(shù)是總數(shù),減數(shù)和差分別是部分數(shù)。 加法和減法互為逆運算。 3整數(shù)乘法:求幾個相同加數(shù)的和的簡便運算叫做乘法。 在乘法里,相同的加數(shù)和相同加數(shù)的個數(shù)都叫做因數(shù)。相同加數(shù)的和叫做積。 在乘法里,0和任何數(shù)相乘都得0 ; 1和任何數(shù)相乘都的任何數(shù)。 一個因數(shù)× 一個因數(shù) =積 一個因數(shù)=積÷另一個因數(shù) 4 整數(shù)除法:已知兩
39、個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算叫做除法。 在除法里,已知的積叫做被除數(shù),已知的一個因數(shù)叫做除數(shù),所求的因數(shù)叫做商。 乘法和除法互為逆運算。 在除法里,0不能做除數(shù)。 ; 因為0和任何數(shù)相乘都得0,所以任何一個數(shù)除以0,均得不到一個確定的商。 被除數(shù)÷除數(shù)=商 除數(shù)=被除數(shù)÷商 被除數(shù)=商×除數(shù) (二)小數(shù)四則運算 1. 小數(shù)加法:小數(shù)加法的意義與整數(shù)加法的意義相同。是把兩個數(shù)合并成一個數(shù)的運算。 2. 小數(shù)減法:小數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算. 3. 小數(shù)乘法:小數(shù)乘整數(shù)的意義和整數(shù)乘法的意義
40、幾個相同加數(shù)和的簡便運算;一個數(shù)乘純小數(shù)的意義是求這個數(shù)的十分之幾、百分之幾、千分之幾是多少。 4. 小數(shù)除法:小數(shù)除法的意義與整數(shù)除法的意義相同,就是已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。 5. 乘方: 求幾個相同因數(shù)的積的運算叫做乘方。例如 3 × 3 =3² (三)分數(shù)四則運算 1. 分數(shù)加法:分數(shù)加法的意義與整數(shù)加法的意義相同。 是把兩個數(shù)合并成一個數(shù)的運算。 2. 分數(shù)減法:分數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算。 3. 分數(shù)乘法:分數(shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算。
41、4. 乘積是1的兩個數(shù)叫做互為倒數(shù)。 5. 分數(shù)除法:分數(shù)除法的意義與整數(shù)除法的意義相同。就是已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。 (四)運算定律 1. 加法交換律:兩個數(shù)相加,交換加數(shù)的位置,它們的和不變。即a+b=b+a 2. 加法結(jié)合律:三個數(shù)相加,先把前兩個數(shù)相加,再加上第三個數(shù);或者先把后兩個數(shù)相加,再和第一個數(shù)相加它們的和不變。即(a+b)+c=a+(b+c) www.21-cn-3. 乘法交換律:兩個數(shù)相乘,交換因數(shù)的位置它們的積不變。即a×b=b×a 4. 乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,再乘以第三個數(shù);或者先把后兩個數(shù)相乘,再和第
42、一個數(shù)相乘,它們的積不變。即(a×b)×c=a×(b×c) 5. 乘法分配律:兩個數(shù)的和與一個數(shù)相乘,可以把兩個加數(shù)分別與這個數(shù)相乘再把兩個積相加。即(a+b)×c=a×c+b×c 6. 減法的性質(zhì):從一個數(shù)里連續(xù)減去幾個數(shù),可以從這個數(shù)里減去所有減數(shù)的和,差不變。即a-b-c=a-(b+c) (五)運算法則 1. 整數(shù)加法計算法則:相同數(shù)位對齊,從低位加起,哪一位上的數(shù)相加滿十,就向前一位進一。 2. 整數(shù)減法計算法則:相同數(shù)位對齊,從低位加起,哪一位上的數(shù)不夠減,就從它的前一位退一作十,和本位上的數(shù)合并在一起,再減。 3
43、. 整數(shù)乘法計算法則:先用一個因數(shù)每一去乘另一個因數(shù)各個數(shù)位上的數(shù),用因數(shù)哪一位上的數(shù)去乘,乘得的數(shù)的末尾就對齊哪一位,然后把各次乘得的數(shù)加起來。 4. 整數(shù)除法計算法則:先從被除數(shù)的高位除起數(shù),就看被除數(shù)的前幾位; 如果不夠除,就多看一位,除到被除數(shù)的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補“0”占位。每次除得的余數(shù)要小于除數(shù)。 5. 小數(shù)乘法法則:先按照整數(shù)乘法的計算法則算出積,再看因數(shù)中共有幾位小數(shù),就從積的右邊起數(shù)出幾位,點上小數(shù)點;如果位數(shù)不夠,就用“0”補足。 6. 除數(shù)是整數(shù)的小數(shù)除法計算法則:先按照整數(shù)除法的法則去除,商的小數(shù)點要和被除數(shù)的小數(shù)點對齊;如果除到被
44、除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添“0”,再繼續(xù)除。 7. 除數(shù)是小數(shù)的除法計算法則:先移動除數(shù)的小數(shù)點,使它變成整數(shù),除數(shù)的小數(shù)點也向右移動幾位(位數(shù)不夠的補“0”),然后按照除數(shù)是整數(shù)的除法法則進行計算。 8. 同分母分數(shù)加減法計算方法:同分母分數(shù)相加減,只把分子相加減,分母不變。 9. 異分母分數(shù)加減法計算方法:先通分,然后按照同分母分數(shù)加減法的的法則進行計算。 10. 帶分數(shù)加減法的計算方法:整數(shù)部分和分數(shù)部分分別相加減,再把所得的數(shù)合并起來。 11. 分數(shù)乘法的計算法則:分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。 1
45、2. 分數(shù)除法的計算法則:甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。 (六) 運算順序 1. 小數(shù)四則運算的運算順序和整數(shù)四則運算順序相同。 2. 分數(shù)四則運算的運算順序和整數(shù)四則運算順序相同。 3. 沒有括號的混合運算:同級運算從左往右依次運算;兩級運算 先算乘、除法,后算加減法。 4. 有括號的混合運算:先算小括號里面的,再算中括號里面的,最后算括號外面的。 5. 第一級運算:加法和減法叫做第一級運算。 6. 第二級運算:乘法和除法叫做第二級運算。應(yīng)用(一)整數(shù)和小數(shù)的應(yīng)用 1 簡單應(yīng)用題 (1) 簡單應(yīng)用題:只含有一種基本數(shù)量關(guān)系,或用一步運算解答的應(yīng)用題,通常叫做簡單應(yīng)用題。 (2
46、) 解題步驟: a 審題理解題意:了解應(yīng)用題的用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復(fù)述條件和問題,幫助理解題意。 b選擇算法和列式計算:這是中心工作。從題目中告訴什么,要求什么著手,逐步根據(jù)所給的條件和問題,聯(lián)系四則運算的含義,分析數(shù)量關(guān)系,確定算法,進行解答并標明正確的單位名稱。 C檢驗:就是根據(jù)應(yīng)用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發(fā)現(xiàn)錯誤,馬上改正。 2 復(fù)合應(yīng)用題 (1)有兩個或兩個以上的基本數(shù)量關(guān)系組成的,用兩步或兩步以上運算解答的應(yīng)用題,通常叫做復(fù)合應(yīng)用題。 (2)含有三個已知條件的兩步計算的應(yīng)用題。
47、求比兩個數(shù)的和多(少)幾個數(shù)的應(yīng)用題。 比較兩數(shù)差與倍數(shù)關(guān)系的應(yīng)用題。 (3)含有兩個已知條件的兩步計算的應(yīng)用題。 已知兩數(shù)相差多少(或倍數(shù)關(guān)系)與其中一個數(shù),求兩個數(shù)的和(或差)。 已知兩數(shù)之和與其中一個數(shù),求兩個數(shù)相差多少(或倍數(shù)關(guān)系)。 (4)解答連乘連除應(yīng)用題。 (5)解答三步計算的應(yīng)用題。 (6)解答小數(shù)計算的應(yīng)算的加法、減法、乘法和除法的應(yīng)用題,他們的數(shù)量關(guān)系、結(jié)構(gòu)、和解題方式都與正式應(yīng)用題基本相同,只是在已知數(shù)或未知數(shù)中間含有小數(shù)。( 7 ) 解答加法應(yīng)用題: a求總數(shù)的應(yīng)用題:已知甲數(shù)是多少,乙數(shù)是多少,求甲乙兩數(shù)的和是多少。 b求比一個數(shù)多幾的數(shù)應(yīng)用題:已知甲數(shù)是多少和乙數(shù)比
48、甲數(shù)多多少,求乙數(shù)是多少。 ( 8 ) 解答減法應(yīng)用題: a求剩余的應(yīng)用題:從已知數(shù)中去掉一部分,求剩下的部分。 b求兩個數(shù)相差的多少的應(yīng)用題:已知甲乙兩數(shù)各是多少,求甲數(shù)比乙數(shù)多多少,或乙數(shù)比甲數(shù)少多少。 c求比一個數(shù)少幾的數(shù)的應(yīng)用題:已知甲數(shù)是多少,乙數(shù)比甲數(shù)少多少,求乙數(shù)是多少。 ( 9 ) 解答乘法應(yīng)用題: a求相同加數(shù)和的應(yīng)用題:已知相同的加數(shù)和相同加數(shù)的個數(shù),求總數(shù)。 b求一個數(shù)的幾倍是多少的應(yīng)用題:已知一個數(shù)是多少,另一個數(shù)是它的幾倍,求另一個數(shù)是多少。 ( 10 ) 解答除法應(yīng)用題: a把一個數(shù)平均分成幾份,求每一份是多少的應(yīng)用題:已知一個數(shù)和把這個數(shù)平均分成幾份的,求每一份是
49、多少。 b求一個數(shù)里包含幾個另一個數(shù)的應(yīng)用題:已知一個數(shù)和每份是多少,求可以分成幾份。 c求一個數(shù)是另一個數(shù)的的幾倍的應(yīng)用題:已知甲數(shù)乙數(shù)各是多少,求較大數(shù)是較小數(shù)的幾倍。 d已知一個數(shù)的幾倍是多少,求這個數(shù)的應(yīng)用題。 (11)常見的數(shù)量關(guān)系: 總價= 單價×數(shù)量 路程= 速度×時間 工作總量=工作時間×工作效率 總產(chǎn)量=單產(chǎn)量×數(shù)量 3典型應(yīng)用題 具有獨特的結(jié)構(gòu)特征的和特定的解題規(guī)律的復(fù)合應(yīng)用題,通常叫做典型應(yīng)用題。 (1)平均數(shù)問題:平均數(shù)是等分除法的發(fā)展。 解題關(guān)鍵:在于確定總數(shù)量和與之相對應(yīng)的總份數(shù)。 算術(shù)平均數(shù):已知幾個不相等的同類量和與之相對
50、應(yīng)的份數(shù),求平均每份是多少。數(shù)量關(guān)系式:數(shù)量之和÷數(shù)量的個數(shù)=算術(shù)平均數(shù)。 加權(quán)平均數(shù):已知兩個以上若干份的平均數(shù),求總平均數(shù)是多少。 數(shù)量關(guān)系式:(部分平均數(shù)×權(quán)數(shù))的總和÷(權(quán)數(shù)的和)=加權(quán)平均數(shù)。 差額平均數(shù):是把各個大于或小于標準數(shù)的部分之和被總份數(shù)均分,求的是標準數(shù)與各數(shù)相差之和的平均數(shù)。 數(shù)量關(guān)系式:(大數(shù)小數(shù))÷2=小數(shù)應(yīng)得數(shù) 最大數(shù)與各數(shù)之差的和÷總份數(shù)=最大數(shù)應(yīng)給數(shù) 最大數(shù)與個數(shù)之差的和÷總份數(shù)=最小數(shù)應(yīng)得數(shù)。 例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這
51、輛車的平均速度。 2·1·c·n·j·y分析:求汽車的平均速用公式。此題可以把甲地到乙地的路程設(shè)為“ 1 ”,則汽車行駛的總路程為“ 2 ”,從甲地到乙地的速度為 100 ,所用的時間為,汽車從乙地到甲地速度為 60 千米 ,所用的時間是 ,汽車共行的時間為+ =,汽車的平均速度為2 ÷=75 (千米) (2) 歸一問題:已知相互關(guān)聯(lián)的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。 根據(jù)求“單一量”的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。 根據(jù)球癡單一量之后,解題采用乘法
52、還是除法,歸一問題可以分為正歸一問題,反歸一問題。 一次歸一問題,用一步運算就能求出“單一量”的歸一問題。又稱“單歸一?!?兩次歸一問題,用兩步運算就能求出“單一量”的歸一問題。又稱“雙歸一?!?正歸一問題:用等分除法求出“單一量”之后,再用乘法計算結(jié)果的歸一問題。 反歸一問題:用等分除法求出“單一量”之后,再用除法計算結(jié)果的歸一問題。 解題關(guān)鍵:從已知的一組對應(yīng)量中用等分除法求出一份的數(shù)量(單一量),然后以它為標準,根據(jù)題目的要求算出結(jié)果。數(shù)量關(guān)系式:單一量×份數(shù)=總數(shù)量(正歸一) 總數(shù)量÷單一量=份數(shù)(反歸一) 例 一個織布工人,在七月份織布 4774 米 , 照這樣計
53、算,織布 6930 米 ,需要多少天? 分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天) (3)歸總問題:是已知單位位數(shù)量的個數(shù),以及不同的單位數(shù)量(或單位數(shù)量的個數(shù)),通過求總數(shù)量求得單位數(shù)量的個數(shù)(或單位數(shù)量)。 特點:兩種相關(guān)聯(lián)的量,其中一種量變化,另一種量也跟著變化,不過變化的規(guī)律相反,和反比例算法彼此相通。 數(shù)量關(guān)系式:單位數(shù)量×一個單位數(shù)量 = 另一個單位數(shù)量 單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量= 另一個單位數(shù)量。 例:修一條水渠,原計劃每天修 800 米 , 6 天修完。
54、實際 4 天修完,每天修了多少米? 分析:因為要求出每天修的先求出水渠的長度。所以也把這類應(yīng)用題叫做“歸總問題”。不同之處是“歸一”先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 (米) (4) 和差問題:已知大小兩個數(shù)的和,以及他們的差,求這兩個數(shù)各是多少的應(yīng)用題叫做和差問題。 解題關(guān)鍵:是把大小兩個數(shù)的和轉(zhuǎn)化成兩個大數(shù)的和(或兩個小數(shù)的和),然后再求另一個數(shù)。 解題規(guī)律:(和差)÷2 = 大數(shù) 大數(shù)差=小數(shù) (和差)÷2=小數(shù) 和小數(shù)= 大數(shù) 例 某加工廠甲班和乙班共有人,因工作需要臨時從乙班調(diào) 46
55、人到甲班工作,這時乙班比甲班人數(shù)少 12 人,求原來甲班和乙班各有多少人? 分析:從乙班到甲班,對于總數(shù)沒有變化,現(xiàn)在把乙數(shù)轉(zhuǎn)化成 2 個乙班,即 9 4 12 ,由此得到現(xiàn)在的乙班是( 9 4 12 )÷ 2=41 (人),乙班在調(diào)出 46 人之前應(yīng)該為 41+46=87 (人),甲班為 9 4 87=7 (人) (5)和倍問題:已知兩個數(shù)的和及它們之間的倍數(shù) 關(guān)系,求兩個數(shù)各是多少的應(yīng)用題,叫做和倍問題。 解題關(guān)鍵:找準標準數(shù)(般說來,題中說是“誰”的幾倍,把誰就確定為標準數(shù)。求出倍數(shù)和之后,再求出標準的數(shù)量是多少。根據(jù)另一個數(shù)(也可能是幾個數(shù))與標準數(shù)的倍數(shù)關(guān)系,再去求另一個數(shù)(或幾個數(shù))的數(shù)量。 解題規(guī)律:和÷倍數(shù)和=標準數(shù) 標準數(shù)×倍數(shù)=另一個數(shù) 例:汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有大貨車和小汽車各有多少輛? www-2-1-cnjy-com分析:大貨車5 倍還多 7 輛,這 7 輛也在總數(shù) 115 輛內(nèi),為了使總數(shù)與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 化學方程式的書寫計算和物質(zhì)的構(gòu)成教案
- 華銀田徑學期教案(全套)
- 文書模板-自來水安裝報告申請書
- 國際民航日節(jié)日活動安全乘機指南飛機趣味問答課件
- 采購行業(yè)年終總結(jié)報告課件模板
- 2025《黑神話:悟空》高中語文試卷(1)含答案
- 2024屆廣東省珠海一中高三全真數(shù)學試題模擬試卷
- 殘疾人合同管理制度
- 不嫁不娶協(xié)議書模板
- 畢業(yè)協(xié)議書戶口
- 住院醫(yī)師規(guī)范化培訓(xùn)教學病例討論教案(模板)
- 2023年合肥市軌道交通集團有限公司招聘筆試真題
- 地磅施工技術(shù)交底
- 民法Ⅱ?qū)W習通超星期末考試答案章節(jié)答案2024年
- 2024年安全教育培訓(xùn)變更新增記錄
- 醫(yī)學文獻檢索復(fù)習試題和答案解析(四)
- 校園消防安全宣傳教育課件
- 2024-2025學年一年級語文上冊第四單元測試卷(統(tǒng)編版2024新教材)
- 2024-2025形勢與政策:促進高質(zhì)量充分就業(yè) 為中國式現(xiàn)代化建設(shè)提供有力支撐
- 小學科學五年級上冊第四單元《健康生活》作業(yè)設(shè)計
- (二) 跨學科實踐教學設(shè)計- 2024-2025學年人教版八年級上冊物理
評論
0/150
提交評論