高二數(shù)學(xué)不等關(guān)系與不等式2_第1頁
高二數(shù)學(xué)不等關(guān)系與不等式2_第2頁
高二數(shù)學(xué)不等關(guān)系與不等式2_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、§3.1 不等關(guān)系與不等式(2) 學(xué)習(xí)目標(biāo) 1. 掌握不等式的基本性質(zhì);2. 會(huì)用不等式的性質(zhì)證明簡單的不等式;3. 會(huì)將一些基本性質(zhì)結(jié)合起來應(yīng)用. 學(xué)習(xí)過程 一、課前準(zhǔn)備1設(shè)點(diǎn)A與平面之間的距離為d,B為平面上任意一點(diǎn),則點(diǎn)A與平面的距離小于或等于A、B兩點(diǎn)間的距離,請將上述不等關(guān)系寫成不等式.2在初中,我們已經(jīng)學(xué)習(xí)過不等式的一些基本性質(zhì). 請同學(xué)們回憶初中不等式的的基本性質(zhì).(1)(2)(3)(4)二、新課導(dǎo)學(xué) 學(xué)習(xí)探究問題1:如何比較兩個(gè)實(shí)數(shù)的大小.問題2:同學(xué)們能證明以上的不等式的基本性質(zhì)嗎?并利用以上基本性質(zhì),證明不等式的下列性質(zhì): 典型例題例1 比較大?。海?) ;(2)

2、 ;(3) ;(4)當(dāng)時(shí),_.變式:比較與的大小.例2 已知求證. 變式: 已知,求證:.例3已知的取值范圍.變式:已知,求的取值范圍.三、總結(jié)提升 學(xué)習(xí)小結(jié)本節(jié)課學(xué)習(xí)了不等式的性質(zhì),并用不等式的性質(zhì)證明了一些簡單的不等式,還研究了如何比較兩個(gè)實(shí)數(shù)(代數(shù)式)的大小作差法,其具體解題步驟可歸納為:第一步:作差并化簡,其目標(biāo)應(yīng)是n個(gè)因式之積或完全平方式或常數(shù)的形式;第二步:判斷差值與零的大小關(guān)系,必要時(shí)須進(jìn)行討論;第三步:得出結(jié)論. 知識(shí)拓展 “作差法”、“作商法”比較兩個(gè)實(shí)數(shù)的大?。?)作差法的一般步驟:作差變形判號(hào)定論(2)作商法的一般步驟:作商變形與1比較大小定論 學(xué)習(xí)評價(jià) 自我評價(jià) 你完成本節(jié)導(dǎo)學(xué)案的情況為( ). A. 很好 B. 較好 C. 一般 D. 較差 當(dāng)堂檢測(時(shí)量:5分鐘 滿分:10分)計(jì)分:1. 若,則與的大小關(guān)系為( ).A BC D隨x值變化而變化2. 已知,則一定成立的不等式是( ).A BC D3. 已知,則的范圍是( ).A BC D4. 如果,有下列不等式:,其中成立的是 .5. 設(shè),則三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論