培優(yōu)提升平面幾何4_第1頁
培優(yōu)提升平面幾何4_第2頁
培優(yōu)提升平面幾何4_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、第四講 平面幾何部分【例 1】 如圖所示的四邊形的面積等于多少?【解析】 題目中要求的四邊形既不是正方形也不是長方形,難以運用公式直接求面積.我們可以利用旋轉的方法對圖形實施變換:把三角形繞頂點逆時針旋轉,使長為的兩條邊重合,此時三角形將旋轉到三角形 的位置.這樣,通過旋轉后所得到的新圖形是一個邊長為的正方形,且這個正方形的面積就是原來四邊形的面積.因此,原來四邊形的面積為.(也可以用勾股定理)【例 2】 如圖所示,中,以為一邊向外作正方形,中心為,求的面積 【解析】 如圖,將沿著點順時針旋轉,到達的位置由于,所以而,所以,那么、三點在一條直線上由于,所以是等腰直角三角形,且斜邊為,所以它的面

2、積為根據(jù)面積比例模型,的面積為【例 3】 如圖,以正方形的邊為斜邊在正方形內(nèi)作直角三角形,、交于已知、的長分別為、,求三角形的面積 【解析】 如圖,連接,以點為中心,將順時針旋轉到的位置那么,而也是,所以四邊形是直角梯形,且,所以梯形的面積為:()又因為是直角三角形,根據(jù)勾股定理,所以()那么(),所以()【例 4】 如下圖,六邊形中,且有平行于,平行于,平行于,對角線垂直于,已知厘米,厘米,請問六邊形的面積是多少平方厘米? 【解析】 如圖,我們將平移使得與重合,將平移使得與重合,這樣、都重合到圖中的了這樣就組成了一個長方形,它的面積與原六邊形的面積相等,顯然長方形的面積為平方厘米,所以六邊形的面積為平方厘米【例 5】 如圖,三角形的面積是,是的中點,點在上,且,與交于點則四邊形的面積等于 【解析】 方法一:連接,根據(jù)燕尾定理,, 設份,則份,份,份,如圖所標所以方法二:連接,由題目條件可得到,所以,而所以則四邊形的面積等于【鞏固】如圖,長方形的面積是平方厘米,是的中點陰影部分的面積是多

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論