下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、全等三角形與角平分線全等圖形:能夠完全重合的兩個(gè)圖形就是全等圖形全等多邊形: 能夠完全重合的多邊形就是全等多邊形相互重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn),相互重合的邊叫做對(duì)應(yīng)邊,相互重合的角叫做對(duì)應(yīng)角全等多邊形的對(duì)應(yīng)邊、對(duì)應(yīng)角分別相等如下圖,兩個(gè)全等的五邊形,記作:五邊形五邊形這里符號(hào)“”表示全等,讀作“全等于”全等三角形:能夠完全重合的三角形就是全等三角形全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角分別相等;反之,如果兩個(gè)三角形的邊和角分別對(duì)應(yīng)相等,那么這兩個(gè)三角形全等全等三角形對(duì)應(yīng)的中線、高線、角平分線及周長(zhǎng)面積均相等全等三角形的概念與表示:能夠完全重合的兩個(gè)三角形叫作全等三角形能夠相互重合的頂點(diǎn)、邊、角分別叫作對(duì)應(yīng)
2、頂點(diǎn)、對(duì)應(yīng)邊、對(duì)應(yīng)角全等符號(hào)為“”全等三角形的性質(zhì):對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等,對(duì)應(yīng)邊上的中線相等,對(duì)應(yīng)邊上的高相等,對(duì)應(yīng)角的角平分線相等,面積相等尋找對(duì)應(yīng)邊和對(duì)應(yīng)角,常用到以下方法:(1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊(2)全等三角形對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角(3)有公共邊的,公共邊常是對(duì)應(yīng)邊(4)有公共角的,公共角常是對(duì)應(yīng)角(5)有對(duì)頂角的,對(duì)頂角常是對(duì)應(yīng)角全等三角形的判定方法:(1) 邊角邊定理(SAS):兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 (2) 角邊角定理(ASA):兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(3) 邊邊邊定理(S
3、SS):三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(4) 角角邊定理(AAS):兩個(gè)角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(5) 斜邊、直角邊定理(HL):斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等判定三角形全等的基本思路:全等三角形的圖形歸納起來有以下幾種典型形式: 平移全等型 對(duì)稱全等型 旋轉(zhuǎn)全等型由全等可得到的相關(guān)定理: 角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角) 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)
4、角所對(duì)的邊也相等 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上與角平分線相關(guān)的問題角平分線的兩個(gè)性質(zhì):角平分線上的點(diǎn)到角的兩邊的距離相等;到角的兩邊距離相等的點(diǎn)在角的平分線上它們具有互逆性角平分線是天然的、涉及對(duì)稱的模型,一般情況下,有下列三種作輔助線的方式:1 由角平分線上的一點(diǎn)向角的兩邊作垂線,2 過角平分線上的一點(diǎn)作角平分線的垂線,從而形成等腰三角形,3 ,這種對(duì)稱的圖形應(yīng)用得也較為普遍,三角形中線的定義:三角形頂點(diǎn)和對(duì)邊中點(diǎn)的連線 三角形中線的相關(guān)定理: 直角三角形斜邊的中線等于斜邊的一半 等腰三角形底邊的中線三線合一(底邊
5、的中線、頂角的角平分線、底邊的高重合)三角形中位線定義:連結(jié)三角形兩邊中點(diǎn)的線段叫做三角形的中位線三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半中位線判定定理:經(jīng)過三角形一邊中點(diǎn)且平行于另一邊的直線必平分第三邊中線中位線相關(guān)問題(涉及中點(diǎn)的問題)見到中線(中點(diǎn)),我們可以聯(lián)想的內(nèi)容無非是倍長(zhǎng)中線以及中位線定理(以后還要學(xué)習(xí)中線長(zhǎng)公式),尤其是在涉及線段的等量關(guān)系時(shí),倍長(zhǎng)中線的應(yīng)用更是較為常見例題精講板塊一、全等三角形的認(rèn)識(shí)與性質(zhì)【例1】 在、上各取一點(diǎn)、,使,連接、相交于再連結(jié)、,若,則圖中全等三角形共有哪幾對(duì)?并簡(jiǎn)單說明理由【鞏固】如圖所示,在上,與相交于圖中有幾對(duì)全等三角形?
6、請(qǐng)一一找出來,并簡(jiǎn)述全等的理由板塊二、三角形全等的判定與應(yīng)用【例2】 (2008年巴中市高中階段教育學(xué)校招生考試)如圖,求證:【例3】 (2008年宜賓市)已知:如圖,求證: 【鞏固】如圖,、相交于點(diǎn),且,求證:【例4】 (哈爾濱市2008 年初中升學(xué)考試)已知:如圖,、四點(diǎn)在同一條直線上,求證:【例5】 已知,如圖,求證:【例6】 、分別是正方形的、邊上的點(diǎn),且求證:【鞏固】、分別是正方形的、邊上的點(diǎn),求證:【例7】 在凸五邊形中,為中點(diǎn)求證:板塊三、截長(zhǎng)補(bǔ)短類【例1】 如圖,點(diǎn)為正三角形的邊所在直線上的任意一點(diǎn)(點(diǎn)除外),作,射線與外角的平分線交于點(diǎn),與有怎樣的數(shù)量關(guān)系?【鞏固】如圖,點(diǎn)為
7、正方形的邊上任意一點(diǎn),且與外角的平分線交于點(diǎn),與有怎樣的數(shù)量關(guān)系?【例2】 如圖,ADAB,CBAB,DM=CM=,AD=,CB=,AMD=75°,BMC=45°,則AB的長(zhǎng)為 ( )A. B. C. D. 【例3】 已知:如圖,ABCD是正方形,F(xiàn)AD=FAE. 求證:BE+DF=AE.【例4】 如圖所示,是邊長(zhǎng)為的正三角形,是頂角為的等腰三角形,以為頂點(diǎn)作一個(gè)的,點(diǎn)、分別在、上,求的周長(zhǎng)【例5】 五邊形ABCDE中,AB=AE,BC+DE=CD,ABC+AED=180°,求證:AD平分CDE板塊四、與角平分線有關(guān)的全等問題【例1】 如圖,已知的周長(zhǎng)是,分別平分
8、和,于,且,求的面積ADOCB【例2】 在中,為邊上的點(diǎn),已知,求證:【例3】 已知中,、分別是及平分線求證:【例4】 已知中,、分別平分和,、交于點(diǎn),試判斷、的數(shù)量關(guān)系,并加以證明【例5】 如圖,已知是上的一點(diǎn),又,求證:【例6】 (“希望杯”競(jìng)賽試題)長(zhǎng)方形ABCD中,AB=4,BC=7,BAD的角平分線交BC于點(diǎn)E,EFED交AB于F,則EF=_【例7】 如圖所示,已知中,平分,、分別在、上,求證:【鞏固】如圖,在中,交于點(diǎn),點(diǎn)是中點(diǎn),交的延長(zhǎng)線于點(diǎn),交 于點(diǎn),若,求證:為的角平分線【鞏固】在中,是的平分線是上任意一點(diǎn)求證:【例8】 如圖,在中,的平分線交與求證:【例9】 如圖所示,在中
9、,為的中點(diǎn),是的平分線,若且交的延長(zhǎng)線于,求證【鞏固】如圖所示,是中的外角平分線,于,是的中點(diǎn),求證 且【鞏固】如圖所示,在中,平分,于,求證【例10】 如圖,中,、分別為兩底角的外角平分線,于,于求證:【鞏固】已知:和分別是的和的外角平分線,求證: ; 【例11】 在中,、分別是三角形的外角、的角平分線,垂足分別是、求證:,【鞏固】在中,、分別是三角形的內(nèi)角、的角平分線,垂足分別是、求證:,【鞏固】(北京市中考模擬題)如圖,在四邊形中,平分,過作,并且,則等于多少?【例12】 如圖,平分,平分,點(diǎn)在上 探討線段、和之間的等量關(guān)系 探討線段與之間的位置關(guān)系版塊一、倍長(zhǎng)中線【例1】 已知:中,是
10、中線求證:【鞏固】(2002年通化市中考題)在中,則邊上的中線的長(zhǎng)的取值范圍是什么?【例2】 如圖,中,是中線求證:【例3】 如圖,已知在中,是邊上的中線,是上一點(diǎn),延長(zhǎng)交于,求證:【例4】 已知ABC,B=C,D,E分別是AB及AC延長(zhǎng)線上的一點(diǎn),且BD=CE,連接DE交底BC于G,求證GD=GE【例5】 已知為的中線,的平分線分別交于、交于求證:【例6】 在中,點(diǎn)為的中點(diǎn),點(diǎn)、分別為、上的點(diǎn),且以線段、為邊能否構(gòu)成一個(gè)三角形?若能,該三角形是銳角三角形、直角三角形或鈍角三角形?【鞏固】如圖所示,在中,是的中點(diǎn),垂直于,如果,求證【例7】 (年四川省初中數(shù)學(xué)聯(lián)賽復(fù)賽·初二組)在中,
11、是斜邊的中點(diǎn),、分別在邊、上,滿足若,則線段的長(zhǎng)度為_版塊二、中位線的應(yīng)用【例8】 是的中線,是的中點(diǎn),的延長(zhǎng)線交于求證:【例9】 如圖所示,在中,延長(zhǎng)到,使,為的中點(diǎn),連接、,求證【鞏固】已知ABC中,AB=AC,BD為AB的延長(zhǎng)線,且BD=AB,CE為ABC的AB邊上的中線求證CD=2CE【例10】 已知:ABCD是凸四邊形,且AC<BD E、F分別是AD、BC的中點(diǎn),EF交AC于M;EF交BD于N,AC和BD交于G點(diǎn) 求證:GMN>GNM【例11】 在中,以為底作等腰直角,是的中點(diǎn),求證:且【例12】 如圖,在五邊形中,為的中點(diǎn)求證:【例13】 (“祖沖之杯”數(shù)學(xué)競(jìng)賽試題,中國(guó)國(guó)家集訓(xùn)隊(duì)試題)如圖所示,是內(nèi)的一點(diǎn),過作于,于,為的中點(diǎn),求證【例14】 (全國(guó)數(shù)學(xué)聯(lián)合競(jìng)賽試題) 如圖所示,在中,為的中點(diǎn),分別延長(zhǎng)、到點(diǎn)、,使過、分別作直線、的垂線,相交于點(diǎn),設(shè)線段、的中點(diǎn)分別為、求證:(1) ;(2) 家庭作業(yè)【習(xí)題1】如圖,已知,求證:【習(xí)題2】點(diǎn)M,N在等邊三角形ABC的AB邊
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 促銷活動(dòng)廣告語
- 企業(yè)開展“強(qiáng)素質(zhì)樹形象”活動(dòng)情況小結(jié)
- 中秋節(jié)日的慰問信(17篇)
- 中學(xué)秋季開學(xué)典禮活動(dòng)主持詞范文(8篇)
- 中秋佳節(jié)的活動(dòng)主持詞范文(5篇)
- DB12-T 1071-2021 氟骨癥現(xiàn)癥病人隨訪管理規(guī)范
- 影響粉末靜電噴涂質(zhì)量的諸多因素
- 耐火材料 高溫耐壓強(qiáng)度試驗(yàn)方法 征求意見稿
- 戈雅課件教學(xué)課件
- 八年級(jí)上學(xué)期語文第二次月考考試卷
- 2024年公路標(biāo)識(shí)安裝合同
- 印刷排版崗位招聘筆試題與參考答案(某大型央企)2025年
- 【餐飲店鋪管理系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)(論文)15000字】
- 2.1充分發(fā)揮市場(chǎng)在資源配置中的決定性作用(課件) 2024-2025學(xué)年高中政治 必修2 經(jīng)濟(jì)與社會(huì)
- 2024年秋季新人教PEP版3年級(jí)上冊(cè)英語全冊(cè)課件(新版教材)
- 2024年菱角項(xiàng)目可行性研究報(bào)告
- 農(nóng)產(chǎn)品質(zhì)量追溯系統(tǒng)操作手冊(cè)
- 道法珍惜師生情誼教學(xué)課件 2024-2025學(xué)年統(tǒng)編版道德與法治七年級(jí)上冊(cè)
- 2024年高考真題-化學(xué)(貴州卷) 含答案
- 2024-2030年中國(guó)線束行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略分析報(bào)告
- 《中華民族共同體概論》考試復(fù)習(xí)題庫(含答案)
評(píng)論
0/150
提交評(píng)論