版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Material ReferenceTable of Contents1. Introduction to Material Models1.1. Material Models for Displacement Applications1.2. Material Models for Temperature Applications1.3. Material Models for Electromagnetic Applications1.4. Material Models for Coupled Applications1.5. Material Parameters1.6. How M
2、aterial Properties Are Evaluated2. Material Model Element Support3. Linear Material Properties3.1. Defining Linear Material Properties3.2. Stress-Strain Relationships3.3. Anisotropic Elasticity3.4. Damping3.5. Thermal Expansion3.6. Emissivity3.7. Specific Heat3.8. Film Coefficients3.9. Temperature D
3、ependency4. Nonlinear Material Properties4.1. Understanding Material Data Tables4.2. Experimental Data4.3. Porous Elasticity4.3.1. Defining the Porous Elasticity Model4.4. Rate-Independent Plasticity4.4.1. Understanding the Plasticity Models4.4.2. Isotropic Hardening4.4.3. Kinematic Hardening4.4.4.
4、Drucker-Prager4.4.5. Gurson4.4.6. Cast Iron4.5. Rate-Dependent Plasticity (Viscoplasticity)4.5.1. Perzyna and Peirce Options4.5.2. Exponential Visco-Hardening (EVH) Option4.5.3. Anand Option4.5.4. Defining Rate-Dependent Plasticity (Viscoplasticity)4.5.5. Creep4.6. Hyperelasticity4.6.1. Arruda-Boyce
5、 Hyperelasticity4.6.2. Blatz-Ko Foam Hyperelasticity4.6.3. Extended Tube Hyperelasticity4.6.4. Gent Hyperelasticity4.6.5. Mooney-Rivlin Hyperelasticity4.6.6. Neo-Hookean Hyperelasticity4.6.7. Ogden Hyperelasticity4.6.8. Ogden Compressible Foam Hyperelasticity4.6.9. Polynomial Form Hyperelasticity4.6
6、.10. Response Function Hyperelasticity4.6.11. Yeoh Hyperelasticity4.6.12. Special Hyperelasticity4.7. Viscoelasticity4.7.1. Viscoelastic Formulation4.7.2. Time-Temperature Superposition4.7.3. Harmonic Viscoelasticity4.8. Microplane4.8.1. Microplane Modeling4.8.2. Microplane Material Models4.8.3. Lea
7、rning More About Microplane Material Modeling4.9. Geomechanics4.9.1. Understanding the Material Models for Geomechanics4.9.2. Cam-clay4.9.3. Mohr-Coulomb4.9.4. Jointed Rock4.9.5. Drucker-Prager Concrete4.9.6. Menetrey-Willam4.10. Porous Media4.10.1. Fluid Flow and Permeability4.10.2. Porous Media Me
8、chanics4.10.3. Porous Media Material Properties4.10.4. Thermal Material Properties4.10.5. Transient vs. Static Analysis4.10.6. Partially Saturated Porous Media Flow and Coupled-Pore-Pressure-Thermal (CPT) Damping4.10.7. Additional Resources4.11. Gasket4.12. Swelling4.13. Shape Memory Alloy (SMA)4.13
9、.1. SMA Model for Superelasticity4.13.2. SMA Material Model with Shape Memory Effect4.13.3. Result Output of Solution Variables4.13.4. Element Support for SMA4.13.5. Learning More About Shape Memory Alloy4.14. MPC184 Joint4.14.1. Linear Elastic Stiffness and Damping Behavior4.14.2. Nonlinear Elastic
10、 Stiffness and Damping Behavior4.14.3. Frictional Behavior4.15. Contact Friction4.15.1. Isotropic Friction4.15.2. Orthotropic Friction4.15.3. Redefining Friction Between Load Steps4.15.4. User-Defined Friction4.16. Contact Interaction4.16.1. Interaction Options for General Contact Definitions4.16.2.
11、 User-Defined Interaction4.17. Cohesive Material Law4.17.1. Exponential Cohesive Zone Material for Interface Elements and Contact Elements4.17.2. Bilinear Cohesive Zone Material for Interface Elements and Contact Elements4.17.3. Viscous Regularization of Cohesive Zone Material for Interface Elements
12、 and Contact Elements4.17.4. Cohesive Zone Material for Contact Elements4.17.5. Post-Debonding Behavior at the Contact Interface4.18. Contact Surface Wear4.18.1. Archard Wear Model4.18.2. User-Defined Wear Model4.19. Custom Material Models4.19.1. User-Defined Material Model (UserMat)4.19.2. User-Def
13、ined Thermal Material Model (UserMatTh)4.19.3. User-Defined Cohesive Material (UserCZM)4.19.4. Using State Variables with User-Defined Materials4.20. Material Strength Limits4.21. Material Damage4.21.1. Damage Initiation Criteria4.21.2. Damage Evolution Law4.22. Material Damping4.22.1. Structural Ma
14、terial Damping Matrix4.22.2. Material-Dependent Alpha and Beta Damping (Rayleigh Damping)4.22.3. Material-Dependent Structural Damping4.22.4. Viscoelastic Material Damping (Harmonic Viscoelasticity)5. Multiphysics Material Properties5.1. Acoustics5.1.1. Equivalent Fluid Model of Perforated Media5.1.
15、2. Acoustic Frequency-Dependent Materials5.1.3. Low Reduced Frequency (LRF) Model of Acoustic Viscous-Thermal Media5.1.4. Diffusion Properties for Room Acoustics5.2. Fluids5.3. Electricity and Magnetism5.3.1. Piezoelectricity5.3.2. Piezoresistivity5.3.3. Magnetism5.3.4. Anisotropic Electric Permitti
16、vity5.4. Migration Model5.4.1. Diffusion Flux and Chemical Potential5.4.2. Atomic Flux Option (TBOPT = 0)5.4.3. Vacancy Flux Option (TBOPT = 1)5.5. Thermal Properties5.5.1. Thermal Conductivity (TBOPT = COND)5.5.2. Specific Heat (TBOPT = SPHT)6. Explicit Dynamic Material Properti
17、es7. Material Curve-Fitting7.1. Hyperelastic Material Curve-Fitting7.1.1. Understanding the Hyperelastic Material Curve-Fitting Process7.1.2. Step 1. Prepare Hyperelastic Experimental Data7.1.3. Step 2. Input the Hyperelastic Experimental Data7.1.4. Step 3. Select a Hyperelastic Material Model Optio
18、n7.1.5. Step 4. Initialize the Hyperelastic Coefficients7.1.6. Step 5. Specify Hyperelastic Control Parameters and Solve7.1.7. Step 6. Plot Your Hyperelastic Experimental Data and Analyze7.1.8. Step 7. Write Hyperelastic Curve-Fitting Data to the Database7.2. Viscoelastic Material Curve-Fitting7.2.1
19、. Understanding the Viscoelastic Material Curve-Fitting Process7.2.2. Step 1. Prepare Viscoelastic Experimental Data7.2.3. Step 2. Input the Viscoelastic Data7.2.4. Step 3. Select a Viscoelastic Material Model Option7.2.5. Step 4. Initialize the Viscoelastic Coefficients7.2.6. Step 5. Specify Viscoe
20、lastic Control Parameters and Solve7.2.7. Step 6. Plot the Viscoelastic Experimental Data and Analyze7.2.8. Step 7. Write Viscoelastic Curve-Fitting Data to the Database7.3. Chaboche Material Curve-Fitting7.3.1. Understanding the Chaboche Material Curve-Fitting Process7.3.2. Step 1. Prepare Chaboche
21、 Experimental Data7.3.3. Step 2. Input the Chaboche Experimental Data7.3.4. Step 3. Select a Chaboche Material Model Option7.3.5. Step 4. Initialize the Chaboche Coefficients7.3.6. Step 5. Specify Chaboche Control Parameters and Solve7.3.7. Step 6. Plot the Chaboche Experimental Data and Analyze7.3.
22、8. Step 7. Write Chaboche Curve-Fitting Data to the Database7.4. Creep Material Curve-Fitting7.4.1. Understanding the Creep Material Curve-Fitting Process7.4.2. Step 1. Prepare Creep Experimental Data7.4.3. Step 2. Input the Creep Experimental Data7.4.4. Step 3. Select a Creep Material Model Option7
23、.4.5. Step 4. Initialize the Creep Coefficients7.4.6. Step 5. Specify Creep Control Parameters and Solve7.4.7. Step 6. Plot the Creep Experimental Data and Analyze7.4.8. Step 7. Write Creep Curve-Fitting Data to the Database7.4.9. Hints for Curve-Fitting Creep Models8. Material Model Combinations9.
24、Understanding Field Variables9.1. Predefined Field Variables9.1.1. Defining Friction9.1.2. Defining Youngs Modulus as a Function of Global X,Y9.2. User-Defined Field Variables9.2.1. Subroutine for Editing Field Variables9.3. Data Processing9.4. Logarithmic Interpolation and Scaling9.5. Interpolation
25、 Algorithms9.5.1. Simple Linear Interpolation9.5.2. Multidimensional Interpolation9.5.3. Evaluating Interpolation Algorithm Results9.5.4. Material Model Support for Interpolation9.5.5. Reference10. GUI-Inaccessible Material PropertiesContains proprietary and confidential information of ANSYS, I
26、nc. and its subsidiaries and affiliates.Release 19.0 - © ANSYS, Inc. All rights reserved.材料參考目錄1.材料模型簡(jiǎn)介1.1。位移應(yīng)用的材料模型1.2。溫度應(yīng)用的材料模型1.3。電磁應(yīng)用的材料模型1.4。耦合應(yīng)用的材料模型1.5。材料參數(shù)1.6。如何評(píng)估材料屬性2.材料模型元素支持3.線(xiàn)性材料屬性3.1。定義線(xiàn)性材料屬性3.2。應(yīng)力 - 應(yīng)變關(guān)系3.3。各向異性彈性3.4。減震3.5。熱膨脹3.6。發(fā)射率3.7。比熱3.8。電影系數(shù)3.9。溫度依賴(lài)性4.非線(xiàn)性材料屬性4.1。了解材料數(shù)據(jù)表4.2。
27、實(shí)驗(yàn)數(shù)據(jù)4.3。多孔彈性4.3.1。定義多孔彈性模型4.4。與速率無(wú)關(guān)的可塑性4.4.1。了解可塑性模型4.4.2。各向同性硬化4.4.3。運(yùn)動(dòng)硬化4.4.4。德魯克 - 普拉格4.4.5。 Gurson4.4.6。鑄鐵4.5。速率依賴(lài)的可塑性(粘塑性)4.5.1。 Perzyna和Peirce選項(xiàng)4.5.2。指數(shù)粘彈劑(EVH)選項(xiàng)4.5.3。 Anand選項(xiàng)4.5.4。定義依賴(lài)于速率的可塑性(粘塑性)4.5.5。爬行4.6。超彈性4.6.1。 Arruda-Boyce超彈性4.6.2。 Blatz-Ko泡沫超彈性4.6.3。延長(zhǎng)管超彈性4.6.4。根特超彈性4.6.5。 Mooney-Ri
28、vlin超彈性4.6.6。 Neo-Hookean超彈性4.6.7。奧格登超彈性4.6.8。奧格登可壓縮泡沫超彈性4.6.9。多項(xiàng)式形式超彈性4.6.10。響應(yīng)函數(shù)超彈性4.6.11。 Yeoh Hyperelasticity4.6.12。特殊超彈性4.7。粘彈性4.7.1。粘彈性配方4.7.2。時(shí)間 - 溫度疊加4.7.3。諧波粘彈性4.8。微平面4.8.1。微平面建模4.8.2。 Microplane材料模型4.8.3。了解有關(guān)Microplane材料建模的更多信息4.9。地質(zhì)力學(xué)4.9.1。了解地質(zhì)力學(xué)的材料模型4.9.2。劍橋4.9.3。莫爾 - 庫(kù)侖4.9.4。關(guān)節(jié)巖4.9.5。 D
29、rucker-Prager混凝土4.9.6。 Menetrey,威廉4.10。多孔媒體4.10.1。流體流動(dòng)和滲透性4.10.2。多孔介質(zhì)力學(xué)4.10.3。多孔介質(zhì)材料屬性4.10.4。導(dǎo)熱材料屬性4.10.5。瞬態(tài)與靜態(tài)分析4.10.6。部分飽和多孔介質(zhì)流動(dòng)和耦合孔隙壓力 - 熱(CPT)阻尼4.10.7。其他資源4.11。墊片4.12。腫脹4.13。形狀記憶合金(SMA)4.13.1。超彈性的SMA模型4.13.2。具有形狀記憶效應(yīng)的SMA材料模型4.13.3。結(jié)果輸出解決方案變量4.13.4。 SMA的元素支持4.13.5。了解形狀記憶合金的更多信息4.14。 MPC184聯(lián)合4.14.
30、1。線(xiàn)性彈性剛度和阻尼行為4.14.2。非線(xiàn)性彈性剛度和阻尼特性4.14.3。摩擦行為4.15。聯(lián)系摩擦力4.15.1。各向同性摩擦4.15.2。正交各向異性摩擦4.15.3。在加載步驟之間重新定義摩擦力4.15.4。用戶(hù)定義的摩擦力4.16。聯(lián)系互動(dòng)4.16.1。一般接觸定義的交互選項(xiàng)4.16.2。用戶(hù)定義的交互4.17。銜接材料法4.17.1。接口元件和接觸元件的指數(shù)粘性區(qū)材料4.17.2。用于界面元件和接觸元件的雙線(xiàn)性粘合區(qū)材料4.17.3。界面元素和接觸元件粘性區(qū)材料的粘性正則化4.17.4。接觸元件的粘性區(qū)材料4.17.5。接觸界面的剝離后行為4.18。接觸表面磨損4.18.1。 A
31、rchard Wear模型4.18.2。用戶(hù)定義的磨損模型4.19。定制材料模型4.19.1。用戶(hù)定義的材料模型(UserMat)4.19.2。用戶(hù)定義的熱材料模型(UserMatTh)4.19.3。用戶(hù)定義的粘性材料(UserCZM)4.19.4。將狀態(tài)變量與用戶(hù)定義的材料一起使用4.20。材料強(qiáng)度限制4.21。物質(zhì)損壞4.21.1。損傷啟動(dòng)標(biāo)準(zhǔn)4.21.2。損害演變法4.22。材料阻尼4.22.1。結(jié)構(gòu)材料阻尼矩陣4.22.2。材料相關(guān)的Alpha和Beta阻尼(瑞利阻尼)4.22.3。與材料相關(guān)的結(jié)構(gòu)阻尼4.22.4。粘彈性材料阻尼(諧波粘彈性)5.多物理場(chǎng)材料特性5.1。聲學(xué)5.1.1。穿孔介質(zhì)的等效流體模型5.1.2。聲頻依賴(lài)材料5.1.3。聲粘性熱介質(zhì)的低通頻率(LRF)模型5.1.4。室內(nèi)聲學(xué)的擴(kuò)散特性5.2。流體5.3。電和磁5.3.1。壓電5.3.2。壓阻5.3.3。磁性5.3.4。各向異性電介電常數(shù)5.4。遷移模型5.4.1。擴(kuò)散通量和化學(xué)勢(shì)5.4.2。原子通量選項(xiàng)(TBOPT = 0)5.4.3??杖?/p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版無(wú)人駕駛汽車(chē)測(cè)試協(xié)議
- 二零二四年度LED路燈購(gòu)銷(xiāo)合同協(xié)議書(shū)3篇
- 二零二五年度餐飲行業(yè)營(yíng)銷(xiāo)推廣服務(wù)合同3篇
- 2024版履約擔(dān)保公司履約擔(dān)保管理系統(tǒng)
- 2025年生態(tài)小區(qū)綠化水資源利用承包合同3篇
- 建筑碗扣支架出租合同(2025版)3篇
- 2024路演合同范本:路演活動(dòng)應(yīng)急預(yù)案合同3篇
- 二零二五年度環(huán)??萍妓幚砑夹g(shù)與應(yīng)用合同3篇
- 二零二五版防盜門(mén)品牌加盟與區(qū)域經(jīng)營(yíng)合同3篇
- 2025年度旅游度假村麻石景觀設(shè)計(jì)與施工合同4篇
- 化工園區(qū)危險(xiǎn)品運(yùn)輸車(chē)輛停車(chē)場(chǎng)建設(shè)標(biāo)準(zhǔn)
- 氧氣霧化吸入法
- 6月大學(xué)英語(yǔ)四級(jí)真題(CET4)及答案解析
- 氣排球競(jìng)賽規(guī)則
- 電梯維修保養(yǎng)報(bào)價(jià)書(shū)模板
- 危險(xiǎn)化學(xué)品目錄2023
- FZ/T 81024-2022機(jī)織披風(fēng)
- GB/T 33141-2016鎂鋰合金鑄錠
- JJF 1069-2012 法定計(jì)量檢定機(jī)構(gòu)考核規(guī)范(培訓(xùn)講稿)
- 綜合管廊工程施工技術(shù)概述課件
- 公積金提取單身聲明
評(píng)論
0/150
提交評(píng)論