八年級上冊月考數(shù)學試卷_第1頁
八年級上冊月考數(shù)學試卷_第2頁
八年級上冊月考數(shù)學試卷_第3頁
八年級上冊月考數(shù)學試卷_第4頁
八年級上冊月考數(shù)學試卷_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、八年級上冊月考數(shù)學試卷分析: 由已知條件,結(jié)合圖形可得 ADBAACB, ACOz ADO, CBOzDBO共3對.找尋時要由易到難,逐個驗證.解答: 解:.AD=AC , BD=BC, AB=AB ,/. AADBAACB ;. / CAO= / DAO , /CBO=/DBO,. AD=AC, BD=BC, OA=OA , OB=OB /.AACOAADO , ACBOADBO.圖中共有3對全等三角形.故答案為: 3點評: 本題考查三角形全等的判定方法, 判定兩個三角形全等的一般方法有:SSS、 SAS、 ASA、 AAS、 HL 注意:AAA 、 SSA 不能判定兩個三角形全等,判定兩個

2、三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角2 (4分)如圖, AOB中,/ B=30° ,將 AOB繞點O順時針 旋轉(zhuǎn)得到 A' O日若/A' =40;則/B' = 30 °, /AOB= 110 ;考點: 旋轉(zhuǎn)的性質(zhì)分析:根據(jù)旋轉(zhuǎn)的性質(zhì)得到,利用/ AOB=/A' OBZ及三角形 內(nèi)角和定理計算即可解答: 解:. AOB中,/ B=30°, #A AOB繞點O順時針旋轉(zhuǎn)得到O日AK =40;./B=/B' =30, / A' Z A=40 ,則/B' =30, /AOB=180

3、 -ZA-ZB=110 .故答案為: 30, 110 點評: 本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等,即對應角相等, 對應線段相等, 對應點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角3 ( 2 分)一個三角形的三邊為 2 、 5、 x ,另一個三角形的三邊為y、 2、 6,若這兩個三角形全等,則x+y= 11 考點:全等三角形的性質(zhì)分析:根據(jù)已知條件分清對應邊,結(jié)合全的三角形的性質(zhì)可得出答案解答:解:.這兩個三角形全等,兩個三角形中都有2長度為2的是對應邊,x應是另一個三角形中的邊6.同理可得y=5. .x+y=11 .故填 11點評: 本題考查了全等三角形的性質(zhì)及對應邊的找法; 根據(jù)兩個三角形中都

4、有2 找對對應邊是解決本題的關(guān)鍵4 ( 2 分)從地面小水洼觀察到一輛小汽車的車牌號為 ,它的實際號是 GFT2567 考點:鏡面對稱分析:關(guān)于倒影,相應的數(shù)字應看成是關(guān)于倒影下邊某條水平的線對稱解答: 解:實際車牌號是: GFT2567故答案為:GFT2567 點評: 本題考查了鏡面反射的性質(zhì); 解決本題的關(guān)鍵是得到對稱 軸,進而得到相應數(shù)字5 (2 分)如圖,點 D, E 分別在線段AB , AC 上, BE, CD 相交于點 O, AE=AD,要使ABEzACD,需添加一個條件是 / ADC=/AEB 或/B=/C 或 AB=AC 或/BDO=/CEO (只需一個 即可,圖中不能再添加其

5、他點或線) 考點:全等三角形的判定專題:開放型分析: 要使ABEACD,已知AE=AD , /A=/A,具備了一組邊和一組角對應相等, 還缺少邊或角對應相等的條件, 結(jié)合判定 方法及圖形進行選擇即可解答:解:vZ A=ZA, AE=AD ,添力口: /ADC=/AEB (ASA), /B=/C (AAS),AB=AC (SAS), /BDO=/CEO (ASA),/.AABEAACD.故填:/ ADC=/AEB 或/ B=/C 或 AB=AC 或/ BDO=/CEO.點評: 本題考查三角形全等的判定方法; 判定兩個三角形全等的一般方法有:SSS、 SAS、 ASA、 AAS、 HL 添加時注意

6、: AAA 、 SSA不能判定兩個三角形全等, 不能添加, 根據(jù)已知結(jié)合圖形及判定方法選擇條件是正確解答本題的關(guān)健6 ( 2 分)工人師傅常用角尺平分一個任意角做法如下:如圖,/ AOB是一個任意角,在邊OA, OB上分別取OM=ON ,移動角尺, 使角尺兩邊相同的刻度分別與M , N 重合 過角尺頂點 C 的射線 OC即是/ AOB的平分線.這種做法的依據(jù)是 SSS證明COMz CON 考點: 作圖 基本作圖;全等三角形的判定與性質(zhì)分析:由三邊相等得 COM A CON,即由SSS判定三角全等做題時要根據(jù)已知條件結(jié)合判定方法逐個驗證解答: 解:由圖可知,CM=CN,又OM=ON, OC為公共

7、邊,.COM 3 CON,./AOC=/BOC,即OC即是/ AOB的平分線.故答案為:SSS證明COMzCON.點評: 本題考查了全等三角形的判定及性質(zhì) 要熟練掌握確定三 角形的判定方法, 利用數(shù)學知識解決實際問題是一種重要的能力, 要注意培養(yǎng)7. (2分)如圖為6個邊長等的正方形的組合圖形,則/ 1 + /2+ /3= 135.考點:全等三角形的判定與性質(zhì).分析:觀察圖形可知/ 1與/3互余,/ 2是直角的一半,利用 這些關(guān)系可解此題.解答: 解:觀察圖形可知: ABCABDE,./ 1 = / DBE,又DBE+/3=90 , / 1 + / 3=90 . /2=45 , / 1 + /

8、 2+/ 3=/ 1 + / 3+2 2=90 +45 =135 .故填135.點評:此題綜合考查角平分線,余角,要注意/ 1與/ 3互余, /2是直角的一半,特別是觀察圖形的能力.8. (2分)如圖,有兩個長度相同的滑梯(即 BC=EF),左邊滑梯 的高度AC與右邊滑梯水平方向的長度 DF相等,則/ ABC+ / DFE= 90度.考點: 全等三角形的應用分析:由圖可得, ABC與DEF均是直角三角形,由已知可 根據(jù) HL 判定兩三角形全等,再根據(jù)全等三角形的對應角相等,不難求解解答:解:.ABC與4DEF均是直角三角形,BC=EF,AC=DF/.RtAABCRtADEF (HL)/ ABC

9、= / DEF/ DEF+Z DFE=90 / ABC+/ DFE=90 .故填 90點評: 此題主要考查學生對全等三角形的判定及性質(zhì)的綜合運用能力9. (2分)如圖,若P為/AOB內(nèi)一點,分別作出P點關(guān)于OA、 OB的對稱點P1、P2,連接P1P2交OA于M ,交OB于N, P1P2=24, 則4PMN的周長是 24 .考點: 軸對稱的性質(zhì)分析:先根據(jù)軸對稱的性質(zhì)得出 PM=P1M, PN=P2N,由此可得 出結(jié)論解答:解:: P點關(guān)于OA、OB的對稱點為P1、P2,.PM=P1M, PN=P2N,.PMN 的周長=PM+PN+MN=P1P2=24.故答案為: 24 點評: 本題考查的是軸對

10、稱的性質(zhì), 熟知如果兩個圖形關(guān)于某直線對稱, 那么對稱軸是任何一對對應點所連線段的垂直平分線是解答此題的關(guān)鍵10. (2分)如圖,在 RtAABC中,/A=90°, / ABC的平分線BD交AC于點D, AD=3 , BC=10,則4 BDC的面積是 15 .考點: 角平分線的性質(zhì)分析:過D作DE,BC于E,根據(jù)角平分線性質(zhì)求出DE=3,根 據(jù)三角形的面積求出即可解答:解:過D作DELBC于E, / A=90 ,/.DAXAB,/BD 平分/ ABC, .AD=DE=3 , .BDC 的面積是 XDEXBC= X10M=15,故答案為: 15 點評: 本題考查了角平分線性質(zhì)和三角形的

11、面積的應用,注意:角平分線上的點到角兩邊的距離相等.11. (4分)如圖, ABCAADE, BC的延長線經(jīng)過點 E,交 AD 于 F, / ACB=/AED=105 , /CAD=1O , / B=50 ,貝U/EAB= 60, /DEF= 35.考點:全等三角形的性質(zhì).分析:由4ACB的內(nèi)角和定理求得/ CAB=25 ;然后由全等三 角形的對應角相等得到/ EAD=/CAB=25 .則結(jié)合已知條件易求/ EAB的度數(shù);最后利用 AEB的內(nèi)角和是180度和圖形來求/ DEF 的度數(shù).解答: 解:如圖,ACB=105 , /B=50°, ./CAB=180 /B/ACB=180 -

12、50 - 105 =25 .又.ABCWADE, ./EAD=/CAB=25 .又. /EAB=/EAC+/CAD+/CAB, /CAD=10 , ./EAB=25 +10 +25 =60 ,即/ EAB=60 . ./AEB=180 - Z EAB - / B=180 - 60 - 50 =70 , ./EDF=/AED - / AEB=105 - 70 =35 .故答案是:60; 35.點評:本題考查全等三角形的性質(zhì).全等三角形的性質(zhì)是證明線 段和角相等的理論依據(jù),應用時要會找對應角和對應邊.12. (2 分)如圖,AEXAB,且 AE=AB, BCXCD,且 BC=CD, 請按照圖中所標

13、注的數(shù)據(jù),計算圖中實線所圍成的圖形的面積 S是 50 .考點:全等三角形的判定與性質(zhì);勾股定理.專題:計算題.分析:由 AELAB, EF,F(xiàn)H,BG,AG,可以得到/ EAF= / ABG , 而 AE=AB , /EFA=/AGB,由此可以證明 EFAAABG ,所以 AF=BG, AG=EF;同理證得 BGC A DHC , GC=DH , CH=BG , 故FH=FA+AG+GC+CH=3+6+4+3=16 ,然后禾【J用面積的害U補法和面積 公式即可求出圖形的面積.解答: 解:v AEXAB 且 AE=AB , EFXFH, BG±FH⇒ / FED=/

14、EFA=/BGA=90 ,/ EAF+ / BAG=90 , / ABG+ / BAG=90 ⇒ / EAF= / ABG ,.AE=AB , / EFA=/AGB, / EAF= / ABG⇒ AEFAA ABG.AF=BG, AG=EF.同理證得 BGCA DHC 得 GC=DH , CH=BG .故 FH=FA+AG+GC+CH=3+6+4+3=16故$= (6+4) X16-3q-6刈=50.故答案為 50 點評: 本題考查的是全等三角形的判定的相關(guān)知識 作輔助線是本題的關(guān)鍵二、精心選一選(本大題共6 小題,每小題 3 分,共 18 分,在每小題

15、給出的四個選項中, 只有一項是符合題目要求的, 把選項的字母代號填在題后的括號內(nèi),相信你一定能選對! )13. ( 3 分)如圖,下列圖案是軸對稱圖形的有()A 1 個 B 2個 C 3個 D 4個考點:軸對稱圖形分析:根據(jù)軸對稱圖形的概念對各圖形分析判斷即可得解解答:解:第1 個圖形是軸對稱圖形,第 2 個圖形不是軸對稱圖形,第 3 個圖形是軸對稱圖形,第 4 個圖形是軸對稱圖形,綜上所述,軸對稱圖形有3 個故選 C點評: 本題考查了軸對稱圖形的概念 軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合14. (3分)在下列條件中,能判定4ABC和B'至等的是()A. AB=A B;

16、 BC=B C; /A=/A'B. /A=/A', /C=/C', AC=B CC. /A=/A', /B=/B', /C=/C'D. AB=A B; BC=B C; A ABC 的周長=& B'的周長考點: 全等三角形的判定分析: 根據(jù)全等三角形的判定方法對各選項分析判斷后利用排除法求解解答:解:A、AB=A B; BC=B C; /A=/A',角不是邊的夾 角,不能判定兩三角形全等,故本選項錯誤;B、/A=/A /C=/C, AC=B C;邊不是對應邊,不能判定 兩三角形全等,故本選項錯誤;C、/A=/A /B=/B&

17、#39;, /C=/C',沒有對應邊相等,不能判 定兩三角形全等,故本選項錯誤;D、AB=A B; BC=B C; A ABC 的周長=& B'的周長,根據(jù) 周長可以求出AC=A C',符合邊邊邊”判定方法,能判定兩三角形全 等,故本選項正確故選 D 點評: 本題考查了全等三角形的判定, 判定兩個三角形全等的一般方法有:SSS SAS、 ASA、 AAS、 HL.注意:AAA、 SSA不能判 定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角15. ( 3 分)在下列說法中,正確的有()三角分別相等的兩個三角形全等

18、;三邊分別相等的兩個三角形全等;兩角及其中一組等角的對邊分別相等的兩個三角形全等;兩邊及其中一組等邊的對角分別相等的兩個三角形全等A 1 個 B 2個 C 3個 D 4個考點: 全等三角形的判定分析: 根據(jù)全等三角形的判定定理SSS、 SAS、 ASA 、 AAS 、 HL進行分析即可解答:解:三角分別相等的兩個三角形全等,說法錯誤;三邊分別相等的兩個三角形全等,說法正確;兩角及其中一組等角的對邊分別相等的兩個三角形全等,說法正確;兩邊及其中一組等邊的對角分別相等的兩個三角形全等,說法錯誤故選: B 點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、 SAS、 ASA

19、、 AAS 、 HL 注意:AAA 、 SSA 不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角16. ( 3 分)將一正方形紙片按下列順序折疊,然后將最后折疊的紙片沿虛線剪去上方的小三角形將紙片展開,得到的圖形是()A B C D 考點:剪紙問題分析:嚴格按照所給方法向下對折,再向右對折,向右下對折,剪去上部分的等腰直角三角形,展開得到答案解答:解:易得剪去的 4 個小正方形正好兩兩位于原正方形一組對邊的中間故選C點評: 主要考查了剪紙問題;學生空間想象能力,動手操作能力是比較重要的,做題時,要注意培養(yǎng)17. (3 分)如圖, ABC

20、中,AD 平分/BAC, DE,AB, DF±AC , E、 F 為垂足,則下列四個結(jié)論,其中正確的個數(shù)是()/DEF=/DFE;AE=AF;AD垂直平分 EF;EF垂直平 分 AD A 1 個 B 2個 C 3個 D 4個考點: 角平分線的性質(zhì);線段垂直平分線的性質(zhì)專題: 常規(guī)題型分析:由角平分線的性質(zhì)可得 DE=DF,則/ DEF=/DFE;易證 AAEDAAFD,貝U AE=AF ;由 DE=DF, AE=AF ,根據(jù)線段垂直平 分線的逆定理可得AD 垂直平分EF 據(jù)此作答解答: 解:.AD 平分/ BAC, DEXAB, DFXAC, E、F 為 垂足, .DE=DF (角平

21、分線的性質(zhì)), ./DEF=/DFE (等邊對等角);DEuDF, AE=AE ,/.RtAAEDRtAAFD (HL), AE=AF; v DE=DF, AE=AF, AD垂直平分EF (線段垂直平分線的逆定理);沒有條件能夠證明 EF 垂直平分 AD 故選 C點評: 此題主要考查角平分線的性質(zhì)和線段垂直平分線的逆定理,屬于基本題目18. (3分)如圖的2網(wǎng)的正方形網(wǎng)格中,4ABC的頂點都在小正方形的格點上,這樣的三角形稱為格點三角形,在網(wǎng)格中與ABC成軸對稱的格點三角形一共有()A 2個 B 3個 C 4個 D 5個考點:軸對稱的性質(zhì)專題:網(wǎng)格型分析:根據(jù)題意畫出圖形,找出對稱軸及相應的三

22、角形即可解答:解:如圖:共3 個,故選 B 點評: 本題考查的是軸對稱圖形, 根據(jù)題意作出圖形是解答此題的關(guān)鍵三、認真答一答 (本大題共7 小題,共 54 分,只要你仔細讀題,積極思考,一定會解答正確的! )19. (4分)已知三條線段a、b、c,用尺規(guī)作出 ABC,使BC=a,AC=b 、 AB=c (不寫作法,保留作圖痕跡)考點: 作圖 復雜作圖分析:作線段BC=a,以點B為圓心,c為半徑畫弧,再以點 C 為圓心, b 為半徑畫弧兩弧的交點就是點 A 的位置,連接AB , AC即可解答: 解:點評:本題主要考查了利用SSS畫三角形的能力.20( 6 分) 雨傘的中截面如圖所示, 傘骨 AB

23、=AC , 支撐桿 OE=OF,AE= AB, AF= AC,當。沿AD滑動時,雨傘開閉,問雨傘開閉過程 中,/ BAD與/ CAD有何關(guān)系?說明理由.考點:全等三角形的應用專題:探究型分析:證角相等,常常通過把角放到兩個全等三角形中來證,本題OA=OA公共邊,可考慮SSS證明三角形全等,從而推出角相等.解答:解:雨傘開閉過程中二者關(guān)系始終是:/ BAD=/CAD,理由如下:.AB=AC, AE= AB, AF= AC,.AE=AF ,在AAOE與4AOF中,/.AAOEAAOF (SSS),BAD= / CAD .點評: 本題考查全等三角形的應用在實際生活中,常常通過兩個全等三角形,得出對應

24、角相等21 (8分)圖為人民公園的荷花池,現(xiàn)要測量此荷花池兩旁 A、B 兩棵樹間的距離(不能直接測量) ,請你根據(jù)所學三角形全等的知 識,設計一種測量方案求出 AB 的長(要求畫出草圖,寫出測量方案 和理由) 考點:全等三角形的應用專題:方案型分析:本題屬于主觀性試題,有多種方案,我們可以構(gòu)造8字形的全等三角形來測得荷花池的長度(如下圖) 解答:解:分別以點A、點B為端點,作AQ、BP,使其相交于點 C,使得 CP=CB , CQ=CA ,連接PQ,測得 PQ 即可得出 AB 的長度理由:由上面可知: PC=BC, QC=AC ,又/ PCQ=/BCA,.PCQ ABCA.AB=PQ.點評:

25、本題考查了全等三角形的應用;此題帶有一定主觀性,學生要根據(jù)已知知識對新問題進行探索和對基礎(chǔ)知識進行鞏固, 這種作法較常見,要熟練掌握22 ( 8 分)一次數(shù)學課上,老師在黑板上畫了如圖圖形,并寫下了四個等式:BD=CA,AB=DC,/ B=/C,/ BAE=/CDE.要求同學從這四個等式中選出兩個作為條件, 推出 AE=DE 請你 試著完成老師提出的要求,并說明理由 (寫出一種即可)已知: (請?zhí)顚懶蛱? ,求證: AE=DE 證明:考點:全等三角形的判定與性質(zhì)專題:計算題分析:已知條件為,加上公共邊相等,利用 SSS得到三角 形ABD與三角形DCA全等,利用全等三角形對應角相等得到/ B二

26、/C,再由對頂角相等,AB=DC ,利用AAS得到三角形ABE與三角 形 DCE 全等,利用全等三角形對應邊相等即可得證解答: 解:已知:BD=CA,AB=DC,求證: AE=DE ,證明:在 ABD和 DCA中,/.AABDADCA (SSS),./ B=/C,在AABE和4DCE中,/.AABEADCE (AAS),.AE=DE .故答案為:.點評: 此題考查了全等三角形的判定與性質(zhì), 熟練掌握全等三角 形的判定與性質(zhì)是解本題的關(guān)鍵23 (8分)如圖,在 ABC中,/C=90°,點D是AB邊上的一 點,DM LAB ,且DM=AC ,過點M作ME II BC交AB于點E.求證:A

27、BC/XMED.考點:全等三角形的判定專題:證明題分析:根據(jù)平行線的性質(zhì)可得出/ B=/MED,結(jié)合全等三角形 的判定定理可判斷 ABCAMED .解答:證明:: MDXAB ,/ MDE= / C=90 ,. ME / BC,./ B=/MED,在AABC 與AMED 中,/.AABCAMED (AAS).點評: 此題考查了全等三角形的判定, 要求掌握三角形全等的判定定理,難度一般24 ( 10 分)畫圖并討論:已知 ABC,如圖所示,要求畫一個三角形,使它與 ABC有一個公共的頂點C,并且與 ABC全等.甲同學的畫法是: (1)延長 BC 和 AC; (2)在 BC 的延長線上取點D,使C

28、D=BC; (3)在AC的延長線上取點E,使CE=AC; (4) 連接DE,得ADEC.乙同學的畫法是:(1)延長AC和BC; (2)在 BC 的延長線上取點M ,使 CM=AC ; (3)在 AC 的延長線上取點 N,使 CN=BC; (4)連接 MN ,得 MNC .究竟哪種畫法對,有如下幾種可能:甲畫得對,乙畫得不對;甲畫的不對,乙畫得對;甲、乙 都畫得對;甲、乙都畫得不對;正確的結(jié)論是.這道題還可這樣完成:(1)用量角器量出/ ACB的度數(shù);(2)在 /ACB的外部畫射線 CP,使/ACP=/ACB; (3)在射線CP上取點 D,使CD=CB; (4)連接AD, AADC就是所要畫的三

29、角形、這樣 畫的結(jié)果可記作 ABC AADC .滿足題目要求的三角形可以畫出多少個呢?答案是無數(shù)個 請你再設計一種畫法并畫出圖形考點:作圖 應用與設計作圖專題:閱讀型;操作型分析:根據(jù)全等三角形的判定定理,找到邊角的相等關(guān)系,求解 一個三角形繞一個端點可以有很多三角形產(chǎn)生, 所以滿足要求的三角形有無數(shù)個解答: 解:對甲來說,由圖形可知,CD=BC、CE=AC,又有/ACB= / ECD/.AABCAEDC.故甲畫的對;對乙來說,由圖形可知,AC=CM、BC=CN, /ACB=/MCN /.AACBAMCN ,故乙的作法正確.甲、乙都畫得對.故選.如圖:AC=AC CD=BC / ACB= / ACD /. AABCAADC設計如下:(1)用量角器量出/ ACB的度數(shù);(2)在/ ACB的外部畫射線 CE,使/ BCE=/ACB;( 3)在射線CE 上取點 D ,使 CD=CA ;(4)連接BD , BCD 就是所要畫的三角形點評: 三角形全等的判定定理有:邊角邊,邊邊邊,角角邊,角邊角25 ( 10 分)附加題,學完 “幾何的回顧”一章后,老師布置了一道思考題:如圖, 點 M , N 分別在正三角形ABC 的 BC , CA 邊上, 且 BM=CN ,AM , BN交于點Q.求證:/ BQM=60度.( 1)請你完成這道思考題;( 2)做完( 1)后,同學們在老師的啟發(fā)下進行

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論