




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上分式運(yùn)算技巧分式運(yùn)算,一要準(zhǔn)確,二要迅速,其中起著關(guān)鍵作用的就是通分. 但對(duì)某些較復(fù)雜的題目,使用一般方法有時(shí)計(jì)算量太大,導(dǎo)致出錯(cuò),有時(shí)甚至算不出來,對(duì)于分式的通分,要講究技巧.下面介紹幾種常用的通分技巧.一、逐步通分法例1 計(jì)算分析:此題若采用將各項(xiàng)一起通分后相加的方法,計(jì)算量很大注意到前后分母之間存在著平方差關(guān)系,可逐步通分達(dá)到目的解:原式=評(píng)注:若一次通分,計(jì)算量太大,利用分母間的遞進(jìn)關(guān)系,逐步通分,避免了復(fù)雜的計(jì)算依次通分構(gòu)成平方差公式,采用逐步通分,則可使問題簡單化。二、整體通分法 例2計(jì)算 分析 題目中既有分式又有整式,不相統(tǒng)一,我們可以尋求到可以做為整體
2、的部分,那么計(jì)算起來就可以簡便一些.解:原式=評(píng)注:此題是一個(gè)分式與多項(xiàng)式的和,若把整個(gè)多項(xiàng)式看作分母為1的分式,再通分相加,使得問題的解法更簡便三、分裂整數(shù)法例3. 計(jì)算:分析 如果幾個(gè)分母不同通分時(shí)可使用分裂整數(shù)法,對(duì)分子降次后再通分. 評(píng)注:當(dāng)算式中各分式的分子次數(shù)與分母次數(shù)相同次數(shù)時(shí)一般要先利用分裂整數(shù)法對(duì)分子降次后再通分;在解某些分式方程中,也可使用分裂整數(shù)法。四、裂項(xiàng)相消法例4 計(jì)算分析 我們看到題目中每一個(gè)分式的分母是兩個(gè)因數(shù)之積,而分子又是一個(gè)定值時(shí),可將每一個(gè)分式先拆成兩項(xiàng)之差,前后相約后再通分.解:原式=評(píng)注:本題若采用通分相加的方法,將使問題變的十分復(fù)雜,注意到分母中各因
3、式的關(guān)系,再逆用公式,各個(gè)分式拆項(xiàng),正負(fù)抵消一部分,再通分。在解某些分式方程中,也可使用拆項(xiàng)法。五. 見繁化簡法例5. 計(jì)算:分析 分式加減時(shí),如果分母不同要先分解因式,再找到公分母,把每個(gè)分式的分母都化為公分母的形式解:原式評(píng)注:若運(yùn)算中的分式不是最簡分式,可先約分,再選用適當(dāng)方法通分,可使運(yùn)算簡便。在分式運(yùn)算中,應(yīng)根據(jù)分式的具體特點(diǎn),靈活機(jī)動(dòng),活用方法。方能起到事半功倍的效率。六、挖掘隱含條件,巧妙求值例6 若,則=_。解:,但考慮到分式的分母不為0,故x=3所以,原式說明:根據(jù)題目特點(diǎn),挖掘題中的隱含條件,整體考慮解決方案是解決本類題目的關(guān)鍵。七、巧用特值法求值例7 已知,則=_。解:此
4、題可直接令x=4,y=5,z=6,代入得:原式說明:根據(jù)題目特點(diǎn),給相關(guān)的字母賦予特定的數(shù)值,可簡化求解過程。8、 巧設(shè)參數(shù)(輔助未知數(shù))求值例8 已知實(shí)數(shù)x、y滿足x:y=1:2,則_。解:設(shè),則,故原式說明:在解答有關(guān)含有比例式的題目時(shí),設(shè)參數(shù)(輔助未知數(shù))求解是一種常用的方法。九整體代入 例9 若=5,求的值 分析:將=5變形,得x-y=-5xy,再將原式變形為,把x-y=-5xy代入,即可求出其值解:因?yàn)?5,所以x-y=-5xy.所以原式=說明:在已知條件等式的求值問題中,把已知條件變形轉(zhuǎn)化后,通過整體代入求值,可避免由局部運(yùn)算所帶來的麻煩十、倒數(shù)法 例2已知a+=5則=_.分析:若
5、先求出a的值再代入求值,顯然現(xiàn)在解不出如果將的分子、分母顛倒過來,即求=a2+1+的值,再進(jìn)一步求原式的值就簡單很多解:因?yàn)閍+=5,所以(a+)2=25,a2+=23.所以=a2+1+=24,所以=說明:利用x和互為倒數(shù)的關(guān)系,溝通已知條件與所求未知式的聯(lián)系,使一些分式求值問題思路自然,解題過程簡潔十一、主元法例11 已知xyz0,且3x4yz=0,2xy8z=0,求的值.解:將z看作已知數(shù),把3x4yz=0與2xy8z=0聯(lián)立,得 3x4yz=0,2xy8z=0.解得 x=3z, y=2z.所以,原式=說明:當(dāng)已知條件等式中含有多元(未知數(shù))時(shí)(一般三元),可視其中兩個(gè)為主元,另一個(gè)為常量,解出關(guān)于主元的方程組后代入求值,可使問題簡化十二、 特殊值法例十二 已知abc=1,則=_.分析:由已知條件無法求出a、b、c的值,可根據(jù)已知條件取字母的一組特殊值,然后代入求值解:令a=1,b=1,c=1,則原式=+=+=1.說明:在已知條件的取值范圍內(nèi)取一些特殊值代入求值,可準(zhǔn)確、迅速地求出結(jié)果練習(xí)題:1.計(jì)算 2. 計(jì)算: 答案:1. ; 2. ; 分式方程習(xí)題1解方程:(1) (2) (3) (4)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年工程合同協(xié)議審批會(huì)簽單
- 《找規(guī)律》(教案)北師大版三年級(jí)下冊(cè)數(shù)學(xué)
- 農(nóng)村建房合同協(xié)議書電子版(2025年版)
- 第13課 網(wǎng)絡(luò)安全防范 教學(xué)設(shè)計(jì) 2024-2025學(xué)年浙教版(2023)初中信息技術(shù)八年級(jí)上冊(cè)
- 第五單元-解決問題的策略-(單元測試)-蘇教版數(shù)學(xué)三年級(jí)上冊(cè)(含解析)
- 2023年現(xiàn)場總線智能儀表投資申請(qǐng)報(bào)告
- 2025年廣西演藝職業(yè)學(xué)院單招職業(yè)傾向性測試題庫完整版
- 2024年電工儀器儀表項(xiàng)目資金需求報(bào)告代可行性研究報(bào)告
- 2025年黑龍江省單招職業(yè)適應(yīng)性測試題庫一套
- 2025陜西省建筑安全員-A證考試題庫附答案
- 結(jié)構(gòu)化學(xué)-第1章講義課件
- 粉塵防爆安全管理臺(tái)賬-全套
- 廣州退休申請(qǐng)表范本
- 管道完整性管理方法及應(yīng)用
- 傳媒侵權(quán)法介紹
- 麥茬花生高產(chǎn)栽培技術(shù)
- 玉米制種技術(shù)
- 中國旅游資源概述
- 高一下分科文科班第一次主題班會(huì)
- 初中數(shù)學(xué)代數(shù)式部分的文本解讀
- 高中學(xué)生的自我評(píng)價(jià)200字 高中學(xué)生的自我評(píng)價(jià)(三篇)
評(píng)論
0/150
提交評(píng)論