![必修四數(shù)學(xué)重點(diǎn)內(nèi)容_第1頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/8/5f8cc996-8628-43b2-a57b-d55305bd67a5/5f8cc996-8628-43b2-a57b-d55305bd67a51.gif)
![必修四數(shù)學(xué)重點(diǎn)內(nèi)容_第2頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/8/5f8cc996-8628-43b2-a57b-d55305bd67a5/5f8cc996-8628-43b2-a57b-d55305bd67a52.gif)
![必修四數(shù)學(xué)重點(diǎn)內(nèi)容_第3頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/8/5f8cc996-8628-43b2-a57b-d55305bd67a5/5f8cc996-8628-43b2-a57b-d55305bd67a53.gif)
![必修四數(shù)學(xué)重點(diǎn)內(nèi)容_第4頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/8/5f8cc996-8628-43b2-a57b-d55305bd67a5/5f8cc996-8628-43b2-a57b-d55305bd67a54.gif)
![必修四數(shù)學(xué)重點(diǎn)內(nèi)容_第5頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/8/5f8cc996-8628-43b2-a57b-d55305bd67a5/5f8cc996-8628-43b2-a57b-d55305bd67a55.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、新課程高中數(shù)學(xué)必修4基礎(chǔ)知識(shí)匯整第一部分 三角函數(shù)與三角恒等變換1任意角和弧度制 1弧度角:等于半徑的弧長(zhǎng)所對(duì)的圓心角為1弧度角 弧度數(shù)公式: 角度制與弧度制的互化:弧度,弧度,弧度. 弧長(zhǎng)公式:;扇形面積公式:.2三角函數(shù)定義: 設(shè)是一個(gè)任意角,終邊與單位圓交于點(diǎn)P(x,y),那么y叫作的正弦,記作sin;x叫作的余弦,記作cos;叫作的正切,記作tan. 角中邊上任意一點(diǎn)為,設(shè),則:.三角函數(shù)在各象限的符號(hào)規(guī)律:一全二正弦,三切四余弦.3三角函數(shù)線:正弦線:MP; 余弦線:OM; 正切線: AT.4誘導(dǎo)公式: 角函數(shù)正弦余弦正切/六組誘導(dǎo)公式統(tǒng)一為“”,記憶口訣一:奇變偶不變,符號(hào)看象限.
2、記憶口訣二:縱變橫不變,符號(hào)看象限.5同角三角函數(shù)基本關(guān)系:(平方和關(guān)系);(商數(shù)關(guān)系).6兩角和與差的正弦、余弦、正切: ; ; .兩角和與差的正弦、余弦、正切的變形運(yùn)用:7輔助角公式:=. 8二倍角公式: ; ; .變形:升冪公式: ; 降冪公式:; . 9.物理意義:物理簡(jiǎn)諧運(yùn)動(dòng),其中. 振幅為A,表示物體離開平衡位置的最大距離;周期為,表示物體往返運(yùn)動(dòng)一次所需的時(shí)間;頻率為,表示物體在單位時(shí)間內(nèi)往返運(yùn)動(dòng)的次數(shù);為相位;為初相.10三角函數(shù)圖象與性質(zhì):函 數(shù)圖象作圖:五點(diǎn)法作圖:五點(diǎn)法作圖:三點(diǎn)二線定義域(,)(,)值域1,11,1(,)極值當(dāng)x2k,ymax=1極大;當(dāng)x2 kymin
3、=-1當(dāng)x2k,ymax1;當(dāng)x2k,ymin1無(wú)奇偶奇函數(shù)偶函數(shù)奇函數(shù)T22單調(diào)性遞增遞減遞增遞減遞增(注:表中k均為整數(shù))11. 正弦型函數(shù)的性質(zhì)及研究思路: 最小正周期,值域?yàn)? 五點(diǎn)法圖:把“”看成一個(gè)整體,取時(shí)的五個(gè)自變量值,相應(yīng)的函數(shù)值為,描出五個(gè)關(guān)鍵點(diǎn),得到一個(gè)周期內(nèi)的圖象. 三角函數(shù)圖象變換路線: . 或: . 單調(diào)性:的增區(qū)間,把“”代入到增區(qū)間,即求解. 整體思想:把“”看成一個(gè)整體,代入與的性質(zhì)中進(jìn)行求解. 這種整體思想的運(yùn)用,主要體現(xiàn)在求單調(diào)區(qū)間時(shí),或取最大值與最小值時(shí)的自變量取值.第二部分 平面向量1. 向量與數(shù)量:在數(shù)學(xué)中,我們把既有大小,又有方向的量叫做向量,反之
4、,把只有大小,沒(méi)有方向的量稱為數(shù)量. 向量常用有向線段來(lái)表示,記為或(起點(diǎn)A,終點(diǎn)B). 向量的大小叫做向量的長(zhǎng)度(或模),記為或. 規(guī)定長(zhǎng)度為0的向量叫做零向量,記為;長(zhǎng)度等于1個(gè)單位的向量稱為單位向量.2. 平行向量:方向相同或相反的非零向量叫做平行向量,記作,并規(guī)定零向量平行于任意一個(gè)向量. 平行向量都可以移到同一直線上,因而也叫共線向量. 方向相同且長(zhǎng)度相等的向量稱為相等向量,記作. 與向量長(zhǎng)度相等而方向相反的向量,稱為的相反向量,記為,規(guī)定零向量的相反向量仍是零向量. 3. 向量加減法:向量加減法運(yùn)算遵循三角形法則與平行四邊形法則.如圖所示,已知非零向量,在平面內(nèi)任取一點(diǎn)O, 作,則
5、向量. 若作,則向量.向量的加減法滿足:交換律;結(jié)合律.向量不等式:對(duì)于任意兩個(gè)向量,有.向量加法多邊形法則:向量首尾相接,結(jié)果首尾連.4. 向量數(shù)乘運(yùn)算:實(shí)數(shù)與向量的乘積仍然是一個(gè)向量,這種運(yùn)算稱為向量的數(shù)乘,記作,并規(guī)定: ;當(dāng)時(shí),的方向與的方向相同;當(dāng)時(shí),的方向與的方向相反;當(dāng)時(shí),. 數(shù)乘運(yùn)算滿足下列運(yùn)算律:分配律、;結(jié)合律.對(duì)于任意向量,以及任意實(shí)數(shù),恒有.向量的加、減、數(shù)乘運(yùn)算統(tǒng)稱為向量的線性運(yùn)算.5. 平面向量基本定理:如果是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù),使. 把不共線的向量叫做表示這一平面內(nèi)所有向量的一組基底.向量夾角:對(duì)兩個(gè)非零向量,
6、在平面內(nèi)任取一點(diǎn)O,作,則叫做向量與夾角. 當(dāng)與夾角是90°時(shí),與垂直,記作.正交分解:依據(jù)平面向量的基本定理,對(duì)平面上的任意向量,均可分解為不共線的兩個(gè)向量與,使. 若把一個(gè)向量分解為兩個(gè)互相垂直的向量,叫做把向量正交分解.坐標(biāo)表示:在平面直角坐標(biāo)系中,分別取與x軸、y軸方向相同的兩個(gè)單位向量作為基底,則對(duì)于平面內(nèi)的一個(gè)向量,有且只有一對(duì)實(shí)數(shù)x、y,使得. 即平面內(nèi)的任意向量都可由x、y唯一確定,把有序數(shù)對(duì)(x,y)叫做向量的坐標(biāo),記作,式子叫做向量的坐標(biāo)表示.6. 平面向量的數(shù)量積運(yùn)算:,其中是與的夾角,叫做向量在方向上的投影. 的幾何意義:數(shù)量等于的長(zhǎng)度與在的方向上的投影的乘積
7、. 把記作,有性質(zhì),從而. 數(shù)量積運(yùn)算滿足下列運(yùn)算律:交換律:;數(shù)乘結(jié)合律:;分配律:. 力作功: 一個(gè)物體在力的作用下產(chǎn)生位移,那么力所作的功,其中是與的夾角,從而.7. 平面向量的坐標(biāo)運(yùn)算:設(shè),則加減法:,;數(shù)乘:;向量數(shù)量積:;模:;距離:;夾角: .8. 向量共線:設(shè),其中,若共線,當(dāng)且僅當(dāng)存在實(shí)數(shù),使,即. 由此可證明平行問(wèn)題、三點(diǎn)共線等.9. 向量垂直:對(duì)于平面內(nèi)任意兩個(gè)非零向量, . 設(shè),則. 10. 線段定比分點(diǎn)的坐標(biāo):已知點(diǎn),點(diǎn)是線段上的一個(gè)分點(diǎn),且,則有,即,由此得到 . 若,得到線段中點(diǎn)坐標(biāo)公式.11.向量知識(shí)與平面幾何的聯(lián)系:平面幾何問(wèn)題向 量 方 法求線段AB的長(zhǎng)度轉(zhuǎn)化為求向量的長(zhǎng)度:.求兩條線段的夾角由數(shù)量積求夾角或.證明兩條直線垂直轉(zhuǎn)化為兩個(gè)非零向量的數(shù)量積為0,即.證明兩條直線平行轉(zhuǎn)化為證明兩個(gè)非零向量共線,即12. 向量法解決
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)藥行業(yè)運(yùn)輸協(xié)議模板
- 體育館裝修終止合同協(xié)議書
- 商業(yè)街區(qū)改造開發(fā)居間合同
- 水上清潔服務(wù)合同范本
- 成品油內(nèi)河運(yùn)輸協(xié)議
- 校園食堂裝修工程合同
- 教室環(huán)保石膏吊頂裝修協(xié)議
- 保健食品居間代理協(xié)議
- 路塹石方爆破施工方案
- 合同范例不需審查
- 2024-2025學(xué)年第二學(xué)期學(xué)校全面工作計(jì)劃
- 2025年護(hù)士資格考試必考基礎(chǔ)知識(shí)復(fù)習(xí)題庫(kù)及答案(共250題)
- 2025年人教版PEP二年級(jí)英語(yǔ)上冊(cè)階段測(cè)試試卷
- 煙草業(yè)產(chǎn)業(yè)鏈協(xié)同創(chuàng)新模式-洞察分析
- 施工現(xiàn)場(chǎng)臨時(shí)水電布置操作手冊(cè)(永臨結(jié)合做法示意圖)
- 2024年廣西事業(yè)單位D類招聘考試真題
- 公文寫作與常見病例分析
- 2025年國(guó)家電投集團(tuán)有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年中國(guó)南方航空招聘筆試參考題庫(kù)含答案解析
- 經(jīng)濟(jì)學(xué)基礎(chǔ)試題及答案 (二)
- 2024-2030年中國(guó)蠔肉市場(chǎng)發(fā)展前景調(diào)研及投資戰(zhàn)略分析報(bào)告
評(píng)論
0/150
提交評(píng)論