版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、一、高階導(dǎo)數(shù)的定義一、高階導(dǎo)數(shù)的定義問題問題: :變速直線運(yùn)動的加速度變速直線運(yùn)動的加速度. .),(tfs 設(shè)設(shè))()(tftv 則瞬時(shí)速度為則瞬時(shí)速度為的的變變化化率率對對時(shí)時(shí)間間是是速速度度加加速速度度tva. )()()( tftvta定義定義.)() )(,)()(lim) )(,)()(0處處的的二二階階導(dǎo)導(dǎo)數(shù)數(shù)在在點(diǎn)點(diǎn)為為函函數(shù)數(shù)則則稱稱存存在在即即處處可可導(dǎo)導(dǎo)在在點(diǎn)點(diǎn)的的導(dǎo)導(dǎo)數(shù)數(shù)如如果果函函數(shù)數(shù)xxfxfxxfxxfxfxxfxfx 記作記作.)(,),(2222dxxfddxydyxf或或 記記作作階階導(dǎo)導(dǎo)數(shù)數(shù)的的函函數(shù)數(shù)階階導(dǎo)導(dǎo)數(shù)數(shù)的的導(dǎo)導(dǎo)數(shù)數(shù)稱稱為為的的函函數(shù)數(shù)一一般般地
2、地,)(1)(,nxfnxf .)(,),()()(nnnnnndxxfddxydyxf或或三階導(dǎo)數(shù)的導(dǎo)數(shù)稱為四階導(dǎo)數(shù)三階導(dǎo)數(shù)的導(dǎo)數(shù)稱為四階導(dǎo)數(shù), 二階和二階以上的導(dǎo)數(shù)統(tǒng)稱為高階導(dǎo)數(shù)二階和二階以上的導(dǎo)數(shù)統(tǒng)稱為高階導(dǎo)數(shù).)(;)(,稱稱為為一一階階導(dǎo)導(dǎo)數(shù)數(shù)稱稱為為零零階階導(dǎo)導(dǎo)數(shù)數(shù)相相應(yīng)應(yīng)地地xfxf .,),(33dxydyxf 二階導(dǎo)數(shù)的導(dǎo)數(shù)稱為三階導(dǎo)數(shù)二階導(dǎo)數(shù)的導(dǎo)數(shù)稱為三階導(dǎo)數(shù),.,),(44)4()4(dxydyxf二、二、 高階導(dǎo)數(shù)求法舉例高階導(dǎo)數(shù)求法舉例例例1 1).0(),0(,arctanffxy 求求設(shè)設(shè)解解211xy )11(2 xy22)1(2xx )1(2(22 xxy32
3、2)1()13(2xx 022)1(2)0( xxxf0322)1()13(2)0( xxxf; 0 . 2 1.1.直接法直接法: :由高階導(dǎo)數(shù)的定義逐步求高階導(dǎo)數(shù)由高階導(dǎo)數(shù)的定義逐步求高階導(dǎo)數(shù).例例2 2.),()(nyRxy求求設(shè)設(shè) 解解1 xy)(1 xy2)1( x3)2)(1( x)1(2 xy)1()1()1()( nxnynn則則為自然數(shù)為自然數(shù)若若,n )()()(nnnxy , !n ) !()1( nyn. 0 例例3 3.),1ln()(nyxy求求設(shè)設(shè) 解解注意注意: :xy 112)1(1xy 3)1(! 2xy 4)4()1(! 3xy )1! 0, 1()1()
4、!1()1(1)( nxnynnn 求求n n階導(dǎo)數(shù)時(shí)階導(dǎo)數(shù)時(shí), ,求出求出1-31-3或或4 4階后階后, ,不要急于合不要急于合并并, ,分析結(jié)果的規(guī)律性分析結(jié)果的規(guī)律性, ,寫出寫出n n階導(dǎo)數(shù)階導(dǎo)數(shù).(.(數(shù)學(xué)歸納數(shù)學(xué)歸納法證明法證明) )例例4 4.,sin)(nyxy求求設(shè)設(shè) 解解xycos )2sin( x)2cos( xy)22sin( x)22sin( x)22cos( xy)23sin( x)2sin()( nxyn)2cos()(cos)( nxxn同理可得同理可得例例5 5.),(sin)(naxybabxey求求為為常常數(shù)數(shù)設(shè)設(shè) 解解bxbebxaeyaxaxcoss
5、in )cossin(bxbbxaeax )arctan()sin(22abbxbaeax )cos()sin(22 bxbebxaebayaxax)2sin(2222 bxbaebaax)sin()(222)( nbxebayaxnn)arctan(ab 2. 高階導(dǎo)數(shù)的運(yùn)算法則高階導(dǎo)數(shù)的運(yùn)算法則:則則階階導(dǎo)導(dǎo)數(shù)數(shù)具具有有和和設(shè)設(shè)函函數(shù)數(shù),nvu)()()()()1(nnnvuvu )()()()2(nnCuCu )()(0)()()()2()1()()(!)1()1(! 2)1()()3(kknnkknnkknnnnnvuCuvvukknnnvunnvnuvuvu 萊布尼茲公式萊布尼茲公式
6、例例6 6.,)20(22yexyx求求設(shè)設(shè) 解解則由萊布尼茲公式知則由萊布尼茲公式知設(shè)設(shè),22xveux 0)()(! 2)120(20)()(20)(2)18(22)19(22)20(2)20( xexexeyxxx22! 21920222022182192220 xxxexexe)9520(22220 xxex3.3.間接法間接法: :常用高階導(dǎo)數(shù)公式常用高階導(dǎo)數(shù)公式nnxnx )1()1()()4()(nnnxnx)!1()1()(ln)5(1)( )2sin()(sin)2()( nkxkkxnn)2cos()(cos)3()( nkxkkxnn)0(ln)()1()( aaaanx
7、nxxnxee )()( 利用已知的高階導(dǎo)數(shù)公式利用已知的高階導(dǎo)數(shù)公式, 通過四則通過四則1)(!)1()1( nnnxnx運(yùn)算運(yùn)算, 變量代換等方法變量代換等方法, 求出求出n階導(dǎo)數(shù)階導(dǎo)數(shù).例例7 7.,11)5(2yxy求求設(shè)設(shè) 解解)1111(21112 xxxy)1(! 5)1(! 52166)5( xxy)1(1)1(16066 xx例例8 8.,cossin)(66nyxxy求求設(shè)設(shè) 解解3232)(cos)(sinxxy )coscossin)(sincos(sin422422xxxxxx xxxx22222cossin3)cos(sin x2sin4312 24cos1431x
8、 x4cos8385 ).24cos(483)( nxynn三、小結(jié)三、小結(jié)高階導(dǎo)數(shù)的定義及物理意義高階導(dǎo)數(shù)的定義及物理意義;高階導(dǎo)數(shù)的運(yùn)算法則高階導(dǎo)數(shù)的運(yùn)算法則(萊布尼茲公式萊布尼茲公式);n階導(dǎo)數(shù)的求法階導(dǎo)數(shù)的求法;1.直接法直接法;2.間接法間接法.思考題思考題設(shè)設(shè) 連續(xù),且連續(xù),且 ,)(xg )()()(2xgaxxf 求求 .)(af 思考題解答思考題解答)(xg可導(dǎo)可導(dǎo))()()()(2)(2xgaxxgaxxf )(xg 不一定存在不一定存在故用定義求故用定義求)(af )(af axafxfax )()(lim0)( afaxxfax )(lim)()()(2limxgaxx
9、gax )(2ag 一、一、 填空題:填空題:1 1、 設(shè)設(shè)tetysin 則則y =_.=_.2 2、 設(shè)設(shè)xytan , ,則則y = =_._.3 3、 設(shè)設(shè)xxyarctan)1(2 ,則,則y = =_._.4 4、 設(shè)設(shè)2xxey , ,則則y = =_._.5 5、 設(shè)設(shè))(2xfy , ,)(xf 存在,則存在,則y = =_. .6 6、 設(shè)設(shè)6)10()( xxf, ,則則)2(f =_.=_.7 7、 設(shè)設(shè)nnnnnaxaxaxax 12211 ( (naaa,21都是常數(shù)都是常數(shù)) ),則,則)(ny= =_. .8 8、設(shè)、設(shè))()2)(1()(nxxxxxf , ,
10、 則則)()1(xfn = =_._.練練 習(xí)習(xí) 題題二、二、 求下列函數(shù)的二階導(dǎo)數(shù):求下列函數(shù)的二階導(dǎo)數(shù):1 1、 xxxy423 ;2 2、 xxylncos2 ;3 3、 )1ln(2xxy . .三、三、 試從試從ydydx 1,導(dǎo)出:,導(dǎo)出:1 1、 322)(yydyxd ;2 2、 6233)()(3yyyydyxd . .五五、驗(yàn)驗(yàn)證證函函數(shù)數(shù)xxececy 21 ( ( , ,1c , ,2c是是常常數(shù)數(shù)) 滿滿足足關(guān)關(guān)系系式式02 yy . .六、六、 求下列函數(shù)的求下列函數(shù)的 n n 階導(dǎo)數(shù):階導(dǎo)數(shù): 1 1、xeyxcos ;2 2、 xxy 11;3 3、 2323 xxxy; ;4 4、 xxxy3sin2sinsin . .一、一、1 1、tetcos2 ; 2 2、xxtansec22; 3 3、212arctan2xxx ; 4 4、)23(222xxex ; 5 5、)(4)(2222xfxxf ; 6 6、207360207360; 7 7、!n; 8 8、)!1( n. .二、二、1 1、3258434 xx;2 2、22cos2si
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版煙酒進(jìn)口清關(guān)代理服務(wù)合同規(guī)范3篇
- 2025年新世紀(jì)版三年級數(shù)學(xué)上冊月考試卷
- 2025年冀少新版八年級英語上冊月考試卷
- 2024版彩鋼工程銷售合同3篇
- 2024年麻醉師培訓(xùn)協(xié)議3篇
- 2025年魯科版高一數(shù)學(xué)上冊階段測試試卷含答案
- 2024職業(yè)技能培訓(xùn)服務(wù)合同
- 2025年粵教版九年級物理上冊月考試卷
- 2024年新世紀(jì)版必修1地理上冊階段測試試卷含答案
- 2024年外研版六年級數(shù)學(xué)上冊月考試卷含答案
- 2023-2024學(xué)年宜昌市重點(diǎn)中學(xué)化學(xué)九年級上冊期末達(dá)標(biāo)檢測模擬試題(含解析)
- 《零知識證明》課件
- 中國老年糖尿病診療指南(2024版)解讀
- 工作優(yōu)化與效益提升
- 純化水注射用水系統(tǒng)的驗(yàn)證課件
- 物業(yè)公司員工管理規(guī)章制度范本
- 山東省泰安市新泰市2023-2024學(xué)年四年級上學(xué)期期末數(shù)學(xué)試卷
- DB21-T 3324-2020 螺桿擠壓式秸稈膨化機(jī) 技術(shù)條件
- 手術(shù)中側(cè)臥位體位擺放護(hù)理課件
- 測繪法規(guī)與管理(第2版)全套教學(xué)課件
- 湖北省天門市2023-2024學(xué)年七年級上學(xué)期期末考試語文試題(含答案)
評論
0/150
提交評論