工程力學(xué)計(jì)算_第1頁(yè)
工程力學(xué)計(jì)算_第2頁(yè)
工程力學(xué)計(jì)算_第3頁(yè)
工程力學(xué)計(jì)算_第4頁(yè)
工程力學(xué)計(jì)算_第5頁(yè)
已閱讀5頁(yè),還剩66頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第四章 荷載效應(yīng)構(gòu)件或結(jié)構(gòu)上的作用使構(gòu)件或結(jié)構(gòu)產(chǎn)生的內(nèi)力(如軸力、剪力、扭矩、彎矩等)、變形、裂縫等統(tǒng)稱作用效應(yīng)或荷載效應(yīng)。荷載與荷載效應(yīng)之間通常按某種關(guān)系相聯(lián)系。本章重點(diǎn)學(xué)習(xí)構(gòu)件和結(jié)構(gòu)在荷載作用下產(chǎn)生的各種內(nèi)力和變形,進(jìn)行單種材料桿件的承載能力分析。第一節(jié) 構(gòu)件內(nèi)力分析一、概述1.1變形固體及其基本假設(shè)變形固體工程中構(gòu)件和零件都是由固體材料制成,如鑄鐵、鋼、木材、混凝土等。這些固體材料在外力作用下都會(huì)或多或少的產(chǎn)生變形,我們將這些固體材料稱為變形固體。變形固體在外力作用上會(huì)產(chǎn)生兩種不同性質(zhì)的變形:一種是當(dāng)外力消除時(shí),變形也隨著消失,這種變形稱為彈性變形;另一種是外力消除后,變形不能全部消失而

2、留有殘余,這種不能消失的殘余變形稱為塑性變形。一般情況下,物體受力后,既有彈性變形,又有塑性變形。但工程中常用的材料,在所受外力不超過(guò)一定范圍時(shí),塑性變形很小,可忽略不計(jì),認(rèn)為材料只產(chǎn)生彈性變形而不產(chǎn)生塑性變形。這種只有彈性變形的物體稱為理想彈性體。只產(chǎn)生彈性變形的外力范圍稱為彈性范圍。本書(shū)將只限于給出材料在彈性范圍內(nèi)的變形、內(nèi)力及應(yīng)力等計(jì)算方法和計(jì)算公式。工程中大多數(shù)構(gòu)件在外力作用下產(chǎn)生變形后,其幾何尺寸的改變量與構(gòu)件原始尺寸相比,常是極其微小的,我們稱這類變形為小變形。材料力學(xué)研究的內(nèi)容將限于小變形范圍。由于變形很微小,我們?cè)谘芯繕?gòu)件的平衡問(wèn)題時(shí),就可采用構(gòu)件變形前的原始尺寸進(jìn)行計(jì)算。變形

3、固體的基本假設(shè)為了使計(jì)算簡(jiǎn)便,在材料力學(xué)的研究中,對(duì)變形固體作了如下的基本假設(shè):(1)均勻連續(xù)假設(shè)假設(shè)變形固體在其整個(gè)體積內(nèi)豪無(wú)空隙地充滿了物質(zhì)。而且各點(diǎn)處材料的力學(xué)性能完全相同。(2)各向同性假設(shè)假設(shè)材料在各個(gè)方向具有相同的力學(xué)性能。常用的工程材料如鋼材、玻璃等都可認(rèn)為是各向同性材料。如果材料沿各個(gè)方向具有不同的力學(xué)性能,則稱為各向異性材料。綜上所述,建筑力學(xué)中所研究的構(gòu)件,是由均勻連續(xù)、各向同性的變形固體材料制成的構(gòu)件,且限于小變形范圍。1.2桿件變形的基本形式桿件圖4-1建筑力學(xué)中主要研究的構(gòu)件是桿件。所謂桿件,是指長(zhǎng)度遠(yuǎn)大于其他兩個(gè)方向尺寸的構(gòu)件。桿件的幾何特點(diǎn)可由橫截面和軸線來(lái)描述。

4、橫截面是與桿長(zhǎng)方向垂直的截面,而軸線是各截面形心的連線(圖4-1)。桿各截面相同、且軸線為直線的桿,稱為等截面直桿。桿件變形的基本形式桿件在不同形式的外力作用下,將發(fā)生不同形式的變形。但桿件變形的基本形式有以下四種:(1)軸向拉伸和壓縮(圖4-2a、圖4-2b)在一對(duì)大小相等、方向相反、作用線與桿軸線相重合的外力作用下,桿件將發(fā)生長(zhǎng)度的改變(伸長(zhǎng)或縮短)。(2)剪切(圖4-2c)在一對(duì)相距很近、大小相等、方向相反的橫向外力作用下,桿件的橫截面將沿外力方向發(fā)生錯(cuò)動(dòng)。(3)扭轉(zhuǎn)(圖4-2d)在一對(duì)大小相等、方向相反、位于垂直于桿軸線的兩平面內(nèi)的力偶作用下,桿的任意兩橫截面將繞軸線發(fā)生相對(duì)轉(zhuǎn)動(dòng)。(4

5、)彎曲(圖4-2e) 在一對(duì)大小相等、方向相反、位于桿的縱向平面內(nèi)的力偶作用下,桿件的軸線由直線彎成曲線。 圖4-2工程實(shí)際中的桿件,可能同時(shí)承受不同形式的外力而發(fā)生復(fù)雜的變形,但都可以看作是上述基本變形的組合。由兩種或兩種以上基本變形組成的復(fù)雜變形稱為組合變形。在以下幾節(jié)中,將分別討論上述各種基本變形和組合變形。1.3內(nèi)力和內(nèi)力分析方法截面法內(nèi)力的概念在第一章對(duì)某一物體進(jìn)行受力分析時(shí),常將該物體作為研究對(duì)象單獨(dú)分離,畫(huà)出該物體的受力圖。物體所受到的力全部是研究對(duì)象(該物體)以外的其他物體對(duì)它的作用力,稱為外力。而在本章討論桿件的強(qiáng)度、剛度、穩(wěn)定性問(wèn)題時(shí),需要通過(guò)作用在桿件上的外力進(jìn)一步分析桿

6、件內(nèi)部的破壞及變形規(guī)律。因此,只研究作用在桿件上的外力就不夠了,還需討論另一種力,即桿件的內(nèi)力。當(dāng)桿件受到外力作用后,桿件內(nèi)部相鄰各質(zhì)點(diǎn)間的相對(duì)位置就要發(fā)生變化,這種相對(duì)位置的變化使整個(gè)桿件產(chǎn)生變形,并使桿件內(nèi)各質(zhì)點(diǎn)之間原來(lái)的(受外力作用之前的)相互作用力發(fā)生改變,各質(zhì)點(diǎn)之間相互作用力的變化使桿件相連兩部分之間原有的相互作用力也發(fā)生了改變。在研究建筑力學(xué)問(wèn)題時(shí),習(xí)慣上將這種由于外力的作用而使桿件相連兩部分之間相互作用力產(chǎn)生的改變量稱為附加內(nèi)力,簡(jiǎn)稱為內(nèi)力。內(nèi)力是由于外力而引起的,桿件所受的外力越大,內(nèi)力也就越大,同時(shí)變形也越大。如我們用雙手拉一根橡膠繩,首先會(huì)發(fā)現(xiàn)橡膠繩也在拉我們的手,這是因?yàn)?/p>

7、當(dāng)我們用手拉橡膠繩時(shí),對(duì)橡膠繩施加了一對(duì)大小相等、方向相反的拉力,這一對(duì)拉力對(duì)橡膠繩而言是作用在它上面的外力,由于這種外力的作用,使橡膠繩內(nèi)任意相鄰的兩部分之間會(huì)產(chǎn)生內(nèi)力,即橡膠繩拉手的力;其次還會(huì)發(fā)現(xiàn)手拉橡膠繩的力越大,橡膠繩對(duì)手的拉力也越大,繩子的變形也越大。但是內(nèi)力的增大不是無(wú)限度的,內(nèi)力達(dá)到某一限度(這一限度與桿件的材料、幾何尺寸等因素有關(guān))時(shí),桿件就會(huì)破壞。由此可知:內(nèi)力與桿件的強(qiáng)度、剛度等有著密切的關(guān)系。討論桿件強(qiáng)度、剛度和穩(wěn)定性問(wèn)題,必須先求出桿件的內(nèi)力。求內(nèi)力的基本方法截面法為了計(jì)算桿件的內(nèi)力,需要先用一個(gè)假想的平面將桿件“截開(kāi)”,使桿件在被切開(kāi)位置處的內(nèi)力顯示出來(lái),然后取桿件

8、的任一部分作為研究對(duì)象,利用這部分的平衡條件求出桿件在被切開(kāi)處的內(nèi)力,這種求內(nèi)力的方法稱為截面法。截面法是求桿件內(nèi)力的基本方法。不管桿件產(chǎn)生何種變形,都可以用截面法求出內(nèi)力。下面以軸向拉伸桿件為例,介紹截面法求內(nèi)力的基本方法和步驟。圖4-3a所示為桿件受到一對(duì)軸向拉力作用產(chǎn)生軸向拉伸的情況。現(xiàn)在我們來(lái)計(jì)算桿上任一截面(如距左端為l3處橫截面)上的內(nèi)力。計(jì)算內(nèi)力的步驟如下:(1)截開(kāi)用假想的截面,在要求內(nèi)力的位置處將桿件截開(kāi),把桿件分為兩部分。(2)代替取截開(kāi)后的任一部分為研究對(duì)象,畫(huà)受力圖。畫(huà)受力圖時(shí),在截開(kāi)的截面處用該截面上的內(nèi)力代替另一部分對(duì)研究部分的作用。如對(duì)于左段而言,截開(kāi)處原右段對(duì)它

9、作用的內(nèi)力此時(shí)已變成左段上的外力而暴露了出來(lái)。由于固體是連續(xù)的,所以截面上的內(nèi)力是連續(xù)分布的,我們稱這種內(nèi)力為分布內(nèi)力(圖4-3b)。本課程所講的內(nèi)力是這些分布內(nèi)力的合力。因此,畫(huà)受力圖時(shí)在被截開(kāi)的截面處,只畫(huà)分布內(nèi)力的合力即可,(圖4-3c)。圖4-3(3)平衡由于整體桿件原本處于平衡狀態(tài)(圖4-3a),因此被截開(kāi)后的任一部分也應(yīng)處于平衡狀態(tài)。對(duì)于研究部分(圖4-3c)根據(jù)作用在該部分上的力系情況,建立平衡方程,從而可求出截面上的內(nèi)力。如對(duì)圖4-3c中的桿段,列平衡方程Fx=0,得Fp=FN;這說(shuō)明該橫截面上的內(nèi)力大小等于FN,方向如圖4-3c所示。若取截面的右段同樣可求得Fp=FN,如圖4

10、-3d所示。1.4平面圖形的幾何性質(zhì)在建筑力學(xué)以及建筑結(jié)構(gòu)的計(jì)算中,經(jīng)常要用到與截面有關(guān)的一些幾何量。例如軸向拉壓的橫截面面積A、圓軸扭轉(zhuǎn)時(shí)的抗扭截面系數(shù)w,和極慣性矩,等都與構(gòu)件的強(qiáng)度和剛度有關(guān)。以后在彎曲等其他問(wèn)題的計(jì)算中,還將遇到平面圖形的另外一些如形心、靜矩、慣性矩、抗彎截面系數(shù)等幾何量。這些與平面圖形形狀及尺寸有關(guān)的幾何量統(tǒng)稱為平面圖形的幾何性質(zhì)。重心和形心重心的概念地球上的任何物體都受到地球引力的作用,這個(gè)力稱為物體的重力。可將物體看作是由許多微小部分組成,每一微小部分都受到地球引力的作用,這些引力匯交于地球中心。但是,由于一般物體的尺寸遠(yuǎn)比地球的半徑小得多,因此,這些引力近似地看

11、成是空間平行力系。這些平行力系的合力就是物體的重力。由實(shí)驗(yàn)可知,不論物體在空間的方位如何,物體重力的作用線始終是通過(guò)一個(gè)確定的點(diǎn),這個(gè)點(diǎn)就是物體重力的作用點(diǎn),稱為物體的重心。一般物體重心的坐標(biāo)公式一般物體重心的坐標(biāo)公式如圖4-4所示,為確定物體重心的位置,將它分割成以個(gè)微小塊,各微小塊重力分別為G1、G2、Gn,其作用點(diǎn)的坐標(biāo)分別為(x1、y1、z1,)、(x2、y2、z2)(xn、yn、zn),各微小塊所受重力的合力W即為整個(gè)物體所受的重力G=Gi:,其作用點(diǎn)的坐標(biāo)為C(xc、yc、zc)。對(duì)Y軸應(yīng)用合力矩定理,有:得 同理,對(duì)x軸取矩可得:將物體連同坐標(biāo)轉(zhuǎn)90。而使坐標(biāo)面oxz成為水平面,

12、再對(duì)z軸應(yīng)用合力矩定理,可得:(41)因此,一般物體的重心坐標(biāo)的公式為:圖4-4均質(zhì)物體重心的坐標(biāo)公式對(duì)均質(zhì)物體用r表示單位體積的重力,體積為V,則物體的重力G=Vr,微小體積為,微小體積重力Gi=Vi·y,代入式(41),得均質(zhì)物體的重心坐標(biāo)公式為:(42)由上式可知,均質(zhì)物體的重心與重力無(wú)關(guān)。所以,均質(zhì)物體的重心就是其幾何中心,稱為形心。對(duì)均質(zhì)物體來(lái)說(shuō)重心和形心是重合的。均質(zhì)薄板的重心(形心)坐標(biāo)公式對(duì)于均質(zhì)等厚的薄平板,如圖4-5所示取對(duì)稱面為坐標(biāo)面oyz,用表示其厚度,Ai表示微體積的面積,將微體積Vi=·Ai及V=·A代人式(42),得重心(形心)坐標(biāo)公

13、式為:(43)因每一微小部分的xi為零,所以xi=0。1.4.1.2.4平面圖形的形心計(jì)算圖4-5形心就是物體的幾何中心。因此,當(dāng)平面圖形具有對(duì)稱軸或?qū)ΨQ中心時(shí),則形心一定在對(duì)稱軸或?qū)ΨQ中心上。如圖4-6所示。若平面圖形是一個(gè)組合平面圖形,則可先將其分割為若干個(gè)簡(jiǎn)單圖形,然后可按式(43)求得其形心的坐標(biāo),這時(shí)公式中的Ai為所分割的簡(jiǎn)單圖形的面積,而yi、zic為其相應(yīng)的形心坐標(biāo),這種方法稱為分割法。另外,有些組合圖形,可以看成是從某個(gè)簡(jiǎn)單圖形中挖去一個(gè)或幾個(gè)簡(jiǎn)單圖形而成,如果將挖去的面積用負(fù)面積表示,則仍可應(yīng)用分割法求其形心坐標(biāo),這種方法又稱為負(fù)面積法。圖4-6【例4-l】試求圖4-7所示T

14、形截面的形心坐標(biāo)。【解】將平面圖形分割為兩個(gè)矩形,如圖4-7所示,每個(gè)矩形的面積及形心坐標(biāo)為:由式(83)可求得T形截面的形心坐標(biāo)為:【例4-2】試求圖4-8所示陰影部分平面圖形的形心坐標(biāo)?!窘狻繉⑵矫鎴D形分割為兩個(gè)圓,如圖8-5所示,每個(gè)圓的面積及形心坐標(biāo)為由式(4-3)可求得陰影部分平面圖形的形心坐標(biāo)為:圖4-7 圖4-8靜 矩定義圖4-9所示,任意平面圖形上所有微面積dA與其坐標(biāo)y(或z)乘積的總和,稱為該平面圖形對(duì)z軸(或Y軸)的靜矩,用Sz(或Sy)表示,即:(44)由上式可知,靜矩為代數(shù)量,它可為正,可為負(fù),也可為零。常用單位為 m3或mm3。圖4-9 圖4-10簡(jiǎn)單圖形的靜矩圖4

15、-10所示簡(jiǎn)單平面圖形的面積A與其形心坐標(biāo)Yc(或zc)的乘積,稱為簡(jiǎn)單圖形對(duì)z軸或Y軸的靜矩,即:(45)當(dāng)坐標(biāo)軸通過(guò)截面圖形的形心時(shí),其靜矩為零;反之,截面圖形對(duì)某軸的靜矩為零,則該軸一定通過(guò)截面圖形的形心。組合平面圖形靜矩的計(jì)算(46)式中A各簡(jiǎn)單圖形的面積; Yci、zci各簡(jiǎn)單圖形的形心坐標(biāo)。式(4-6)表明:組合圖形對(duì)某軸的靜矩等于各簡(jiǎn)單圖形對(duì)同一軸靜矩的代數(shù)和。【例4-3】計(jì)算圖4-11所示T形截面對(duì)z軸的靜矩。【解】將T形截面分為兩個(gè)矩形,其面積分別為:截面對(duì)z軸的靜矩圖4-11慣性矩、慣性積、慣性半徑慣性矩、慣性積、慣性半徑的定義慣性矩圖4-12圖4-12所示,任意平面圖形上

16、所有微面積dA與其坐標(biāo)Y(或z)平方乘積的總和稱為該平面圖形對(duì)z軸(或Y軸)的慣性矩,用Iz(或Iy)表示,即:(47)式(4-7)表明,慣性矩恒為正值。常用單位為m4或mm4。慣性積 圖4-12所示,任意平面圖形上所有微面積dA與其坐標(biāo)z、Y乘積的總和,稱為該平面圖形對(duì)z、Y兩軸的慣性積,用Izy表示,即:(48)慣性積可為正,可為負(fù),也可為零。常用單位為m4或mm4??梢宰C明,在兩正交坐標(biāo)軸中,只要z、Y軸之一為平面圖形的對(duì)稱軸,則平面圖形對(duì)z、Y軸的慣性積就一定等于零。慣性半徑在工程中為了計(jì)算方便,將圖形的慣性矩表示為圖形面積A與某一長(zhǎng)度平方的乘積,即:(49)式中iz、iy平面圖形對(duì)z

17、、Y軸的慣性半徑,常用單位為m或mm。1.4.3.1.4簡(jiǎn)單圖形(圖4-13)的慣性矩及慣性半徑(1)簡(jiǎn)單圖形對(duì)形心軸的慣性矩(由式47積分可得)矩形 圓形環(huán)形型鋼的慣性矩可直接由型鋼表查得,見(jiàn)附錄二。圖4-13(2)簡(jiǎn)單圖形的慣性半徑矩形圓形平行移軸公式慣性矩的平行移軸公式同一平面圖形對(duì)不同坐標(biāo)軸的慣性矩是不相同的,但它們之間存在著一定的關(guān)系。現(xiàn)給出圖4-14所示平面圖形對(duì)兩個(gè)相平行的坐標(biāo)軸的慣性矩之間的關(guān)系。(410)式(4-10)稱為慣性矩的平行移軸公式。它表明平面圖形對(duì)任一軸的慣性矩,等于平面圖形對(duì)與該軸平行的形心軸的慣性矩再加上其面積與兩軸間距離平方的乘積。在所有平行軸中,平面圖形對(duì)

18、形心軸的慣性矩為最小。1.4.3.2.2組合截面慣性矩的計(jì)算組合圖形對(duì)某軸的慣性矩,等于組成組合圖形的各簡(jiǎn)單圖形對(duì)同一軸的慣性矩之和?!纠?-4】計(jì)算圖4-15所示T形截面對(duì)形心z軸的慣性矩Izc?!窘狻?1)求截面相對(duì)底邊的形心坐標(biāo)(2)求截面對(duì)形心軸的慣性矩圖4-14 圖4-15【例4-5】試計(jì)算圖4-16所示由兩根N020槽鋼組成的截面對(duì)形心軸z、Y的慣性矩?!窘狻拷M合截面有兩根對(duì)稱軸,形心C就在這兩對(duì)稱軸的交點(diǎn)。由型鋼表查得每根槽鋼的形心C1或C2到腹板邊緣的距離為19.5mm,每根槽鋼截面積為:每根槽鋼對(duì)本身形心軸的慣性矩為:整個(gè)截面對(duì)形心軸的慣性矩應(yīng)等于兩根槽鋼對(duì)形心軸的慣性軸之和

19、,故得:圖4-16形心主慣性軸和形心主慣性矩的概念若截面對(duì)某坐標(biāo)軸的慣性積Izoyo=0,則這對(duì)坐標(biāo)軸z、yo稱為截面的主慣性軸,簡(jiǎn)稱主軸。截面對(duì)主軸的慣性矩稱為主慣性矩,簡(jiǎn)稱主慣矩。通過(guò)形心的主慣性軸稱為形心主慣性軸,簡(jiǎn)稱形心主軸。截面對(duì)形心主軸的慣性矩稱為形心主慣性矩,簡(jiǎn)稱為形心主慣矩。 凡通過(guò)截面形心,且包含有一定對(duì)稱軸的一對(duì)相互垂直的坐標(biāo)軸一定是型心主軸。二、構(gòu)件內(nèi)力計(jì)算2.1軸向拉伸和壓縮時(shí)的內(nèi)力軸向拉伸和壓縮的概念沿桿件軸線作用一對(duì)大小相等、方向相反的外力,桿件將發(fā)生軸向伸長(zhǎng)(或縮短)變形,這種變形稱為軸向拉伸(或壓縮)(圖4-17 a、b)。產(chǎn)生軸向拉伸或壓縮的杠件稱為拉桿或壓桿

20、。(a) (b)圖4-16工程結(jié)構(gòu)中,拉桿和壓桿是常見(jiàn)的。如圖4-17所示的三角支架中,桿AB是拉桿,桿BC是壓桿。又如圖4-18所示的屋架,上弦桿是壓桿,下弦桿是拉桿。圖4-18圖4-172.1.2軸向拉壓桿的內(nèi)力軸力2.1.2.1軸向拉伸和壓縮時(shí)桿件的內(nèi)力軸力圖4-19如圖4-19(a)所示為一等截面直桿受軸向外力作用,產(chǎn)生軸向拉伸變形?,F(xiàn)用截面法分析m-m截面上的內(nèi)力。用假想的橫截面將桿在mm截面處截開(kāi)分為左、右兩部分,取左部分為研究對(duì)象如圖4-19(b)所示,左右兩段桿在橫截面上相互作用的內(nèi)力是一個(gè)分布力系,其合力為N。由于整個(gè)桿件是處于平衡狀態(tài),所以左段桿也應(yīng)保持平衡,由平衡條件X=

21、0可知,mm橫截面上分布內(nèi)力的合力N必然是一個(gè)與桿軸相重合的內(nèi)力,且N=F,其指向背離截面。同理,若取右段為研究對(duì)象如圖4-19(c)所示,可得出相同的結(jié)果。對(duì)于壓桿,也可通過(guò)上述方法求得其任一橫截面上的內(nèi)力N,但其指向?yàn)橹赶蚪孛妗N覀儗⒆饔镁€與桿件軸線相重合的內(nèi)力,稱為軸力,用符號(hào)N表示。背離截面的軸力,稱為拉力;而指向截面的軸力,稱為壓力。2.1.2.2軸力的正負(fù)號(hào)規(guī)定軸向拉力為正號(hào),軸向壓力為負(fù)號(hào)。在求軸力時(shí),通常將軸力假設(shè)為拉力方向,這樣由平衡條件求出結(jié)果的正負(fù)號(hào),就可直接代表軸力本身的正負(fù)號(hào)。軸力的單位為N或kN。2.1.2.3軸力圖當(dāng)桿件受到多于兩個(gè)軸向外力的作用時(shí),在桿件的不同橫

22、截面上軸力不盡相同。我們將表明沿桿長(zhǎng)各個(gè)橫截面上軸力變化規(guī)律的圖形,稱為軸力圖。以平行于桿軸線的橫坐標(biāo)軸z表示各橫截面位置,以垂直于桿軸線的縱坐標(biāo)N表示各橫截面上軸力的大小,將各截面上的軸力按一定比例畫(huà)在坐標(biāo)系中并連線,就得到軸力圖。畫(huà)軸力圖時(shí),將正的軸力畫(huà)在軸線上方,負(fù)的軸力畫(huà)在軸線下方?!纠?-6】一直桿受軸向外力作用如圖4-20(a)所示,試用截面法求各段桿的軸力。【解】(1)用截面法求各段桿橫截面上的軸力 AB段取11截面左部分桿件為研究對(duì)象,其受力如圖4-20(a)所示,由平衡條件得BC段取22截面左部分桿件為研究對(duì)象,其受力如圖4-20 (c)所示,由平衡條件圖4-20,得CD段取

23、33截面右部分桿為研究對(duì)象,其受力如圖4-20(d)所示,由平衡條件,得(2)畫(huà)軸力圖根據(jù)上面求出各段桿軸力的大小及其正負(fù)號(hào)畫(huà)出軸力圖,如圖4-20(e)所示:【例4-7】試畫(huà)出圖4-21(a)所示階梯柱的軸力圖,已知F=40kN?!窘狻?1)求各段柱的軸力(2)畫(huà)軸力圖根據(jù)上面求出各段柱的軸力畫(huà)出階梯柱的軸力圖,如圖4-21(b)所示。圖4-21值得注意的是:在采用截面法之前,外力不能沿其作用線移動(dòng)。因?yàn)閷⑼饬σ苿?dòng)后就改變了桿件的變形性質(zhì),內(nèi)力也就隨之改變。軸力圖、受力圖應(yīng)與原圖各截面對(duì)齊。當(dāng)桿水平放置時(shí),正值應(yīng)畫(huà)在與桿件軸線平行的橫坐標(biāo)軸的上方,而負(fù)值則畫(huà)在下方,并必須標(biāo)出正號(hào)或負(fù)號(hào),如圖

24、4-20所示;當(dāng)桿件豎直放置時(shí)正、負(fù)值可分別畫(huà)在桿軸線兩側(cè)并標(biāo)出正號(hào)或負(fù)號(hào)。軸力圖上必須標(biāo)明橫截面的軸力值、圖名及其單位,還應(yīng)適當(dāng)?shù)禺?huà)一些與桿件軸線垂直的直線。當(dāng)熟練時(shí),可以不畫(huà)各段桿的受力圖,直接畫(huà)出軸力圖,橫坐標(biāo)軸z和縱坐標(biāo)軸N也可以省略不畫(huà),如圖4-21(b)所示。從前面的幾個(gè)例題的計(jì)算中我們會(huì)發(fā)現(xiàn):截面上的軸力與所研究的桿段上的外力之間存在一種關(guān)系,即軸力等于所取桿段(左段或右段)上外力的代數(shù)和。在計(jì)算軸力時(shí),外力的方向背離截面(引起拉力)取正號(hào),外力的方向指向截面(引起壓力)取負(fù)號(hào)。用這種規(guī)律求軸力可以省去列平衡方程,使計(jì)算簡(jiǎn)化。2.2扭轉(zhuǎn)內(nèi)力扭轉(zhuǎn)的概念圖4-22扭轉(zhuǎn)變形是桿件基本變

25、形之一。在垂直桿件軸線的兩平面內(nèi),作用一對(duì)大小相等、轉(zhuǎn)向相反的力偶時(shí),桿件就產(chǎn)生扭轉(zhuǎn)變形。大多數(shù)受扭的桿件其橫截面為圓形,受扭的圓截面桿稱為圓軸。圓軸扭轉(zhuǎn)的變形特點(diǎn)是桿件的各橫截面繞桿軸線發(fā)生相對(duì)轉(zhuǎn)動(dòng)。其中桿件任意兩截面間相對(duì)轉(zhuǎn)動(dòng)的角度稱為扭轉(zhuǎn)角,用表示。如圖4-22中的角就是曰截面相對(duì)A截面的扭轉(zhuǎn)角。圖4-23圖4-24在工程中,以扭轉(zhuǎn)變形為主的桿件是很多的。如汽車轉(zhuǎn)向盤(pán)的操縱桿(圖4-23)、攪拌器的主軸(圖4-24)、鉆探機(jī)的鉆桿和機(jī)械的傳動(dòng)軸等。 圓軸扭轉(zhuǎn)時(shí)橫截面上的內(nèi)力外力偶矩的計(jì)算作用于軸上的外力偶,有時(shí)在工程中并不是已知的,常常是已知軸所傳遞的功率和軸的轉(zhuǎn)速,再由下式求出外力偶矩

26、,即(411)式中,P為軸傳遞的功率(kW);n為軸的轉(zhuǎn)速(rmin);M。為軸上的外力偶矩(N·m)。若功率的單位為馬力,則外力矩的計(jì)算公式為(412)扭矩圖4-25圓軸橫截面上的內(nèi)力仍通過(guò)截面法來(lái)進(jìn)行分析。下面以圖4-25(a)所示兩端承受外力偶矩Me作用的圓軸為例,來(lái)說(shuō)明求任意橫截面mm上內(nèi)力的方法。用假想截面沿截面m-m將軸截開(kāi),任取一段(如左段),如圖4-25(b)所示。由于圓軸AB是平衡的,因此截取部分也處于平衡狀態(tài),根據(jù)力偶的性質(zhì),橫截面m-m上必有一個(gè)內(nèi)力偶矩與外力偶矩肘。平衡,我們把這個(gè)內(nèi)力偶矩稱為扭矩,用T表示,單位為N·m或kN·m。由平衡條

27、件得若取右段為研究對(duì)象,如圖4-25(c)所示,由平衡條件得與取左段為研究對(duì)象結(jié)果相同。以上結(jié)果說(shuō)明,計(jì)算某截面上的扭矩,無(wú)論取該截面左側(cè)還是右側(cè)為研究對(duì)象,求出的扭矩大小都相等且轉(zhuǎn)向相反,它們是作用與反作用的關(guān)系。為了使從截面左、右兩側(cè)求得同一截面的扭矩不但數(shù)值相等,而且有同樣的正負(fù)號(hào),用右手螺旋法則規(guī)定扭矩的正負(fù)號(hào)。即以右手四指表示扭矩的轉(zhuǎn)向,若大拇指的指向與橫截面的外法線n指向一致時(shí),扭矩為正(圖95a);反之,扭矩為負(fù)(圖95b)。當(dāng)橫截面上扭矩的實(shí)際轉(zhuǎn)向未知時(shí),一般先假設(shè)扭矩為正。若求得結(jié)果為正,表示扭矩實(shí)際轉(zhuǎn)向與假設(shè)相同;若求得結(jié)果為負(fù),則表示扭矩實(shí)際轉(zhuǎn)向與假設(shè)相反。圖4-26例4

28、-8 如圖4-27(a)所示,一傳動(dòng)系統(tǒng)的主軸,其轉(zhuǎn)速n=960rmin,輸入功率PA=275kW,輸出功率P。:20kW,PB=75kW。試求指定截面1-1、2-2上的扭矩。解 (1)計(jì)算外力偶矩。由式(4-11)得同理可得(2)計(jì)算扭矩。用截面法分別計(jì)算截面1-l、2-2上的扭矩。截面l-1:圖4-27假想地沿截面1-1處將軸截開(kāi),取左段為研究對(duì)象,并假設(shè)截面l-1上的扭矩為T(mén)1,且為正方向(圖4-27b),由平衡條件得負(fù)號(hào)表示該截面上的扭矩實(shí)際轉(zhuǎn)向與假設(shè)轉(zhuǎn)向相反,即為負(fù)方向。截面2-2:假想沿截面2-2將軸截開(kāi),取左段為研究對(duì)象,并假設(shè)截面2-2上的扭矩為疋,且為正方向(圖4-27c),

29、由平衡條件得負(fù)號(hào)表示該截面上的扭矩實(shí)際轉(zhuǎn)向與假設(shè)轉(zhuǎn)向相反,即為負(fù)方向。若以截面2-2右段為研究對(duì)象(圖4-27d),同理,由平衡條件得所得結(jié)果與取左段為研究對(duì)象的結(jié)果相同,計(jì)算卻比較簡(jiǎn)單。所以計(jì)算某截面上的扭矩時(shí)。應(yīng)取受力比較簡(jiǎn)單的一段為研究對(duì)象。由上面的計(jì)算結(jié)果不難看出:受扭桿件任一橫截面上扭矩的大小。等于此截面一側(cè)(左或右)所有外力偶矩的代數(shù)和。扭矩圖當(dāng)軸上同時(shí)作用兩個(gè)以上的外力偶時(shí),橫截面上的扭矩隨截面位置的不同而變化。反映軸各橫截面上扭矩隨截面位置不同而變化的圖形稱為扭矩圖。根據(jù)扭矩圖可以確定最大扭矩值及其所在截面的位置。扭矩圖的繪制方法與軸力圖相似。需先以軸線為橫軸z、以扭矩r為縱軸

30、,建立卜z坐標(biāo)系,然后將各截面上的扭矩標(biāo)在卜z坐標(biāo)系中,正扭矩在x軸上方,負(fù)扭矩在x軸下方。下面通過(guò)例題說(shuō)明扭矩圖繪制的方法和步驟。例4-9 傳動(dòng)軸如圖4-28a所示,主動(dòng)輪A輸入功率PA=120kW,從動(dòng)輪B、 C、D輸出功率分別為PB=30kW,PC=40kW,PD=50kW,軸的轉(zhuǎn)速n=300 rmin。試作出該軸的扭矩圖。解 (1)計(jì)算外力偶矩。由式(4-11)得同理可得(2)計(jì)算扭矩。根據(jù)作用在軸上的外力偶,將軸分成鮒、AC和CD三段用截面法分別計(jì)算各段軸的扭矩,如圖4-28b、c、d所示。(3)作扭矩圖。建立T-x坐標(biāo)系x軸沿軸線方向,T向上為正。將軸各橫截面上的扭矩標(biāo)在T-x坐標(biāo)

31、中。由于BA段各橫截面上扭矩均為-0.95 kN·m,故扭矩圖為平行于x軸的直線,且位于z軸下方;而AC段、CB段各橫截面上扭矩分別為2.87kN·m和1.59kN·m,故扭矩圖均為平行于x軸的直線,且位于x軸上方,于是得到如圖4-28e所示的扭矩圖。從扭矩圖可以看出,在集中力偶作用處,其左右截面扭矩不同,此處發(fā)生突變,突變值等于集中力偶矩的大小:最大扭矩發(fā)生在AC段內(nèi),且Tmax=2.87kN·m。討論 對(duì)同一根軸來(lái)說(shuō),若把主動(dòng)輪A與從動(dòng)輪B對(duì)調(diào),即把主動(dòng)輪布置于軸的左端(圖4-29a),則得到該軸的扭矩圖(圖4-29b)。這時(shí)軸的最大扭矩發(fā)生在AB段

32、內(nèi),且Tmax=3.82kN·m。比較圖4-28e和圖4-29b可見(jiàn),傳動(dòng)軸上主動(dòng)輪和從動(dòng)輪布置的位置不同,軸所承受的最大扭矩也隨之改變。軸的強(qiáng)度和剛度都與最大扭矩值有關(guān)。因此在布置輪子位置時(shí),要盡可能降低軸內(nèi)的最大扭矩值。顯然圖4-28布局比較合理圖4-28圖4-292.3彎曲內(nèi)力平面彎曲的概念彎曲和平面彎曲2.3.1.1.1彎曲在工程中我們經(jīng)常遇到這樣一些情況:桿件所受的外力的作用線是垂直于桿軸線的平衡力系(或在縱向平面內(nèi)作用外力偶)。在這些外力作用下,桿的軸線由直線變成曲線(圖4-30),圖中虛線表示梁在外力作用下變形后的軸線)。這種變形稱為彎曲。凡是以彎曲為主要變形的桿件通常

33、稱之為梁。圖4-30梁是工程中一種常用的桿件,尤其是在建筑工程中,它占有特別重要的地位。如房屋建筑中常用于支承樓板的梁(圖4-31),陽(yáng)臺(tái)的挑梁(圖4-32),門(mén)窗過(guò)梁(圖4-33),廠房中的吊車梁(圖4-34),粱式橋的主梁(圖4-35)等等。圖4-32圖4-31圖4-34圖4-33圖4-36圖4-352.3.1.1.2平面彎曲工程中常見(jiàn)的梁,其橫截面大多為矩形、工字形、T形、十字形、槽形等(圖4-36),它們都有對(duì)稱軸,梁橫截面的對(duì)稱軸和梁的軸線所組成的平面通常稱為縱向?qū)ΨQ平面(圖4-37)。當(dāng)作用于梁上的力(包括主動(dòng)力和約束反力)全部都在梁的同一縱向?qū)ΨQ平面內(nèi)時(shí),梁變形后的軸線也在該平面

34、內(nèi),我們把這種力的作用平面與梁的變形平面相重合的彎曲稱為平面彎曲。圖4-37中的梁就產(chǎn)生了平面彎曲。平面彎曲是彎曲問(wèn)題中最常見(jiàn),而且最簡(jiǎn)單的彎曲。本章只對(duì)平面彎曲變形進(jìn)行分析和討論。梁的類型圖4-37工程中通常根據(jù)梁的支座反力能否用靜力平衡方程全部求出,將梁分為靜定梁和超靜定梁兩類。凡是通過(guò)靜力平衡方程就能夠求出全部約束反力和內(nèi)力的梁,統(tǒng)稱為靜定梁。靜定梁又根據(jù)其跨數(shù)分為單跨靜定梁和多跨靜定梁兩類,單跨靜定梁是本章的研究對(duì)象。通常根據(jù)支座情況將單跨靜定梁分為三種基本形式。(1)懸臂梁一端為固定端支座,另一端為自由端的梁(圖4-38a)(2)簡(jiǎn)支梁一端為固定鉸支座,另一端為可動(dòng)鉸支座的梁(圖4-

35、38b) (3)外伸梁梁身的一端或兩端伸出支座的簡(jiǎn)支梁(圖4-38c、d)圖4-38第二節(jié) 構(gòu)件承載力分析梁的內(nèi)力在求出梁的支座反力后,為了計(jì)算梁的應(yīng)力和位移,從而對(duì)梁進(jìn)行強(qiáng)度和剛度計(jì)算,需要首先研究梁的內(nèi)力。梁的內(nèi)力剪力和彎矩梁在產(chǎn)生平面彎曲時(shí)將會(huì)產(chǎn)生哪些內(nèi)力呢?下面我們?nèi)杂们髢?nèi)力的基本方法截面法來(lái)討論梁的內(nèi)力?,F(xiàn)以圖4-39a所示的簡(jiǎn)支梁為例來(lái)分析。設(shè)荷載FP和支座反力FAy 、FBy均作用在同一縱向?qū)ΨQ平面內(nèi),組成的平面力系使梁處于平衡狀態(tài),欲計(jì)算截面1-1上的內(nèi)力。圖4-39用一個(gè)假想的平面將該梁從要求內(nèi)力的位置11處切開(kāi),使梁分成左右兩段,由于原來(lái)梁處于平衡狀態(tài),所以被切開(kāi)后它的左段

36、或右段也處于平衡狀態(tài),可以任取一段為隔離體?,F(xiàn)取左段研究。在左段梁上向上的支座反力FAy有使梁段向上移動(dòng)的可能,為了維持平衡,首先要保證該段在豎直方向不發(fā)生移動(dòng),于是左段在切開(kāi)的截面上必定存在與FAy,大小相等、方向相反的內(nèi)力FQ但是,內(nèi)力FQ只能保證左段梁不移動(dòng),還不能保證左段梁不轉(zhuǎn)動(dòng),因?yàn)橹ё戳Ay,對(duì)1-1截面形心有一個(gè)順時(shí)針?lè)较虻牧谾Ayx,這個(gè)力矩使該段有順時(shí)針?lè)较蜣D(zhuǎn)動(dòng)的趨勢(shì)。為了保證左段梁不發(fā)生轉(zhuǎn)動(dòng),在切開(kāi)的1-1截面上還必定存在一個(gè)與FAyx力矩大小相等、轉(zhuǎn)向相反的內(nèi)力偶M(圖4-39b)。這樣在1-1截面上同時(shí)有了FQ和M才使梁段處于平衡狀態(tài)??梢?jiàn),產(chǎn)生平面彎曲的梁在其橫

37、截面上有兩個(gè)內(nèi)力:其一是與橫截面相切的內(nèi)力FQ,稱為剪力;其二是在縱向?qū)ΨQ平面內(nèi)的內(nèi)力偶,其力偶矩為M,稱為彎矩。截面1-1上的剪力和彎矩值可由左段梁的平衡條件求得。由得將力矩方程的矩心選在截面1-1的形心C點(diǎn)處,剪力FQ將通過(guò)矩心。由得以上左段梁在截面1-1上的剪力和彎矩,實(shí)際上是右段梁對(duì)左段梁的作用。根據(jù)作用力與反作用力原理可知,右段梁在截面1-1上的FQ、M與左段梁在1-1截面上的FQ、M應(yīng)大小相等、方向(或轉(zhuǎn)向)相反(圖4-39c)。若對(duì)右段梁列平衡方程進(jìn)行求解,求出的FQ及M也必然如此,請(qǐng)讀者自己驗(yàn)證。剪力和彎矩的正負(fù)號(hào)規(guī)定由上述分析可知:分別取左、右梁段所求出的同一截面上的內(nèi)力數(shù)值

38、雖然相等,但方向(或轉(zhuǎn)向)卻正好相反,為了使根據(jù)兩段梁的平衡條件求得的同一截面(如11截面)上的剪力和彎矩具有相同的正、負(fù)號(hào),這里對(duì)剪力和彎矩的正負(fù)號(hào)作如下規(guī)定。2.3.2.2.1剪力的正負(fù)號(hào)規(guī)定當(dāng)截面上的剪力FQ使所研究的梁段有順時(shí)針?lè)较蜣D(zhuǎn)動(dòng)趨時(shí),剪力為正(圖4-40a);有逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng)趨勢(shì)時(shí)剪力為負(fù)(圖4-40b)。2.3.2.2.2彎矩的正負(fù)號(hào)規(guī)定當(dāng)截面上的彎矩肘使所研究的水平梁段產(chǎn)生向下凸的變形時(shí)(即該梁段的下部受拉,上部受壓)彎矩為正(圖ll一12a);產(chǎn)生向上凸的變形時(shí)(即該梁段的上部受拉,下部受壓)彎矩為負(fù)(圖1112b)。圖4-40用截面法求指定截面上的剪力和彎矩用截面法求梁

39、指定截面上的剪力和彎矩時(shí)的步驟如下:1)求支座反力。2)用假想的截面將梁從要求剪力和彎矩的位置截開(kāi)。3)取截面的任一側(cè)為隔離體,作出其受力圖,列平衡方程求出剪力和彎矩。圖4-41 下面舉例說(shuō)明如何用截面法求梁指定截面上的內(nèi)力剪力和彎矩。例4-10試用截面法求圖4-42a所示懸臂梁1-l、2-2截面上的剪力和彎矩。已知:q=15kNm,F(xiàn),=30kN。圖中截面1-1無(wú)限接近于截面A,但在A的右側(cè),通常稱為A偏右截面。解 圖示梁為懸臂梁,由于懸臂梁具有一端為自由端的特征,所以在計(jì)算內(nèi)力時(shí)可以不求其支座反力。但在不求支座反力的情況下,不能取有支座的梁段計(jì)算。圖4-42(1)求1-1截面的剪力和彎矩。

40、用假想的截面將梁從1-1位置截開(kāi),取1-1截面的右側(cè)為隔離體,作該段的受力圖(圖4-42b),圖中1-1截面上的剪力和彎矩都按照正方向假定,由平衡方程Fy=0得計(jì)算結(jié)果為正,說(shuō)明1-1截面上剪力的實(shí)際方向與圖中假定的方向一致,即1-1截面上的剪力為正值。由M1=0得計(jì)算結(jié)果為負(fù),說(shuō)明1-1截面上彎矩的實(shí)際方向與圖中假定的方向相反,即1-1截面上的彎矩為負(fù)值。(2)求2-2截面上的剪力和彎矩。用假想的截面將梁從2-2位置截開(kāi),取2-2截面的右側(cè)為隔離體,作該段的受力圖,如圖4-42e所示。由平衡方程Fy=0,得由M2=0得例4-11 用截面法求圖4-43a所示外伸梁指定截面上的剪力和彎矩。已知:

41、 Fp=100kN,a=15m,M=75kN·m,(圖中截面1-l、2-2都無(wú)限接近于截面 A,但1-1在A左側(cè)、2-2在A右側(cè),習(xí)慣稱1-1為A偏左截面,2-2為A偏右截面;同樣3-3、4-4分別稱為D偏左及偏右截面)。解 (1)求支座反力。對(duì)簡(jiǎn)支梁和外伸梁必須求支座反力。以B點(diǎn)為矩心,列力矩平衡方程。由MB=0得由Fy=0得(2)求1-1截面上的剪力和彎矩。取1-1截面的左側(cè)梁段為隔離體,作該段的受力圖(圖4-43b)。由平衡方程圖4-43(3)求2-2截面上的剪力和彎矩。取2-2截面的左側(cè)梁段為隔離體,作該段的受力圖(圖4-43c)。由平衡方程(4)求3-3截面的剪力和彎矩。取

42、3-3截面的右段為隔離體,作該段的受力圖(圖4-43d)。由平衡方程(5)求4-4截面的剪力和彎矩。取4-4截面的右段為隔離體,作該段的受力圖(圖4-43e)。由平衡方程對(duì)比1-1、2-2截面上的內(nèi)力會(huì)發(fā)現(xiàn):在A偏左及偏右截面上的剪力不同。而彎矩相同,左、右兩側(cè)剪力相差的數(shù)值正好等于A截面處集中力的大小。我們稱這種現(xiàn)象為剪力發(fā)生了突變;對(duì)比3-3、4-4截面上的內(nèi)力會(huì)發(fā)現(xiàn):在D偏左及偏右截面上的剪力相同,而彎矩不同,左、右兩側(cè)彎矩相差的數(shù)值正好等于D截面處集中力偶的大小,我們稱這種現(xiàn)象為彎矩發(fā)生了突變。截面法是求內(nèi)力的基本方法,利用截面法求內(nèi)力時(shí)應(yīng)注意以下幾點(diǎn):1)用截面法求梁的內(nèi)力時(shí),可取截

43、面任一側(cè)研究,但為了簡(jiǎn)化計(jì)算,通常取外力比較少的一側(cè)來(lái)研究。2)作所取隔離體的受力圖時(shí),在切開(kāi)的截面上,未知的剪力和彎矩通常均按正方向假定。這樣能夠把計(jì)算結(jié)果的正、負(fù)號(hào)和剪力、彎矩的正負(fù)號(hào)相統(tǒng)一,即計(jì)算結(jié)果的正負(fù)號(hào)就表示內(nèi)力的正負(fù)號(hào)。3)在列梁段的靜力平衡方程時(shí),要把剪力、彎矩當(dāng)作隔離體上的外力來(lái)看待。因此,平衡方程中剪力、彎矩的正負(fù)號(hào)應(yīng)按靜力計(jì)算的習(xí)慣而定,不要與剪力、彎矩本身的正、負(fù)號(hào)相混淆。4)在集中力作用處,剪力發(fā)生突變,沒(méi)有固定數(shù)值,應(yīng)分別計(jì)算該處稍偏左及稍偏右截面上的剪力,而彎矩在該處有固定數(shù)值,稍偏左及稍偏右截面上的數(shù)值相同,只需要計(jì)算該截面處的一個(gè)彎矩即可;在集中力偶作用處,彎

44、矩發(fā)生突變,沒(méi)有固定數(shù)值,應(yīng)分別計(jì)算該處稍偏左及稍偏右截面上的彎矩,而剪力在該處有固定數(shù)值,稍偏左及稍偏右截面上的數(shù)值相同,只需要計(jì)算該截面處的一個(gè)剪力即可。直接用外力計(jì)算截面上的剪力和彎矩通過(guò)對(duì)用截面法計(jì)算梁的內(nèi)力進(jìn)行分析,我們可以發(fā)現(xiàn):截面上的內(nèi)力和該截面一側(cè)外力之間存在一種關(guān)系(規(guī)律),因此,通??梢岳靡?guī)律直接根據(jù)截面的任一側(cè)梁上的外力來(lái)求出該截面上的剪力和彎矩,省去作梁段的受力圖和列平衡方程,使計(jì)算內(nèi)力的過(guò)程簡(jiǎn)單化,我們稱這種方法為直接用外力計(jì)算截面上的剪力和彎矩,簡(jiǎn)稱用規(guī)律求剪力和彎矩。2.3.2.4.1用外力直接求截面上剪力的規(guī)律梁內(nèi)任一截面上的剪力FQ,在數(shù)值上等于該截面一側(cè)(

45、左側(cè)或右側(cè))梁段上所有外力在平行于剪力方向投影的代數(shù)和(由Fy=0的平衡方程移項(xiàng)而來(lái))。用式子可表示為根據(jù)對(duì)剪力正負(fù)號(hào)的規(guī)定可知:在左側(cè)梁段上所有向上的外力會(huì)在截面上產(chǎn)生正剪力,而所有向下的外力會(huì)在截面上產(chǎn)生負(fù)剪力;在右側(cè)梁段上所有向下的外力會(huì)在截面上產(chǎn)生正剪力,而所有向上的外力會(huì)在截面上產(chǎn)生負(fù)剪力。即:左上右下正,反之負(fù)。由于力偶在任何坐標(biāo)軸上的投影都等于零,因此作用在梁上的力偶對(duì)剪力沒(méi)有影響。2.3.2.4.2用外力直接求截面上彎矩的規(guī)律梁內(nèi)任一截面上的彎矩肘,等于該截面一側(cè)(左側(cè)或右側(cè))所有外力對(duì)該截面形心取力矩的代數(shù)和(由Mc=0的平衡方程移項(xiàng)而來(lái))。用式子可表示為根據(jù)對(duì)彎矩正負(fù)號(hào)的規(guī)

46、定可知:在左側(cè)梁段上的外力(包括外力偶)對(duì)截面形心的力矩為順時(shí)針時(shí),在截面上產(chǎn)生正彎矩,為逆時(shí)針時(shí)在截面上產(chǎn)生負(fù)彎矩;在右側(cè)梁段上的外力(包括外力偶)對(duì)截面形心的力矩為逆時(shí)針時(shí),在截面上產(chǎn)生正彎矩,為順時(shí)針時(shí)在截面上產(chǎn)生負(fù)彎矩,即:左順右逆正,反之負(fù)。例4-12 求圖4-44所示簡(jiǎn)支梁指定截面上的剪力和彎矩。已知:M=8kN·m,q=2kNm。解 (1)求支座反力。取梁AB為隔離體,假設(shè)支座反力FAy向下、FBy向上。由平衡方程圖4-44(2)求1-1截面上的剪力和彎矩。從1-1位置處將梁截開(kāi)后,取該截面的左側(cè)為隔離體。作用在左側(cè)梁段上的外力有:力偶M,支座反力FAy,由FQ=FL。

47、及左上剪力正,反之負(fù)的規(guī)律可知由M=Mc(FL)及左順彎矩正的規(guī)律可知(3)求2-2截面上的剪力和彎矩。從2-2位置處將梁截開(kāi)后,取該截面的右側(cè)為隔離體。作用在右側(cè)梁段上的外力有:均布荷載q,支座反力F毋,由FQ=FL及右下剪力正的規(guī)律可知由M=Mc(FL)及右逆彎矩正,反之負(fù)的規(guī)律可知(4)求3-3截面上的剪力和彎矩。從3-3位置處將梁截開(kāi)后,取該截面的右側(cè)為隔離體。作用在右側(cè)梁段上的外力有:均布荷載q,支座反力FBy,由FQ=FR及右下剪力正,反之負(fù)的規(guī)律可知由M=Mc(FR)及右逆彎矩正,反之負(fù)的規(guī)律可知當(dāng)然在計(jì)算1-1截面的剪力和彎矩時(shí)也可以取該截面右側(cè)計(jì)算,在求2-2、3-3截面的剪

48、力和彎矩時(shí)也可以取該截面左側(cè)計(jì)算,請(qǐng)讀者自己練習(xí)。例4-13 求圖4-45所示外伸梁指定截面上的剪力和彎矩。已知:M=6kN·m,q=1kNm,F(xiàn)P=3kN。 圖4-45 解 (1)求支座反力。由平衡方程檢驗(yàn):說(shuō)明支座反力計(jì)算正確。(2)求1-1、2-2截面上的剪力和彎矩。從要求剪力和彎矩的截面位置處將梁截開(kāi)后,取該截面的左側(cè)為隔離體。由FQ=FL及左上剪力正、M=Mc(FL)及左順彎矩正的規(guī)律可知(3)求3-3、4-4截面上的剪力和彎矩。從要求剪力和彎矩的截面位置處將梁截開(kāi)后,取該截面的右側(cè)為隔離體。由FQ=FR及右下剪力正、M=Mc(FR)及右逆彎矩正的規(guī)律可知顯然,用“規(guī)律”直

49、接計(jì)算剪力和彎矩比較簡(jiǎn)捷,所以,實(shí)際計(jì)算時(shí)經(jīng)常使用。梁的內(nèi)力圖由上節(jié)各例題可知:通常情況下,梁上不同截面上的剪力和彎矩值是不同的,即梁的內(nèi)力(剪力和彎矩)隨梁橫截面的位置而變化。對(duì)梁進(jìn)行強(qiáng)度和剛度計(jì)算時(shí),除了要計(jì)算指定截面上的內(nèi)力外,還必須知道內(nèi)力沿梁軸線的變化規(guī)律,從而找到內(nèi)力的最大值以及最大內(nèi)力值所在的位置。所以,本節(jié)要討論梁的內(nèi)力圖,以便形象地了解內(nèi)力在全梁范圍內(nèi)的變化規(guī)律。為今后學(xué)習(xí)強(qiáng)度和剛度以及學(xué)習(xí)后續(xù)課程奠定基礎(chǔ)。剪力方程和彎矩方程梁橫截面上的剪力和彎矩一般是隨橫截面的位置而變化的。若橫截面沿梁軸線的位置用橫坐標(biāo)x表示,則梁內(nèi)各橫截面上的剪力和彎矩就都可以表示為坐標(biāo)y的函數(shù),即圖4

50、-46以上兩函數(shù)分別稱為梁的剪力方程和彎矩方程。通過(guò)梁的剪力方程和彎矩方程,可以找到剪力和彎矩沿梁軸線的變化規(guī)律。在建立剪力方程、彎矩方程時(shí),剪力、彎矩仍然可使用截面法或用“規(guī)律”直接由外力計(jì)算。如圖4-46a所示的懸臂梁,當(dāng)將坐標(biāo)原點(diǎn)假定在左端點(diǎn)A上時(shí)(圖4-46b),在距離原點(diǎn)為x的位置處取一截面,并取該截面的左側(cè)研究,直接用外力的規(guī)律可寫(xiě)出方程。剪力方程為彎矩方程為式中括號(hào)內(nèi)表示z值的取值范圍,即方程的適用范圍??梢?jiàn),當(dāng)x=0時(shí)表示該懸臂梁A偏右截面上的剪力FQRB=一FP及A截面上的彎矩MA=0;當(dāng)x=l時(shí)表示B偏左截面上的內(nèi)力FQBR=一FP、MBL=FPl。剪力圖和彎矩圖為了形象地

51、表明沿梁軸線各橫截面上剪力和彎矩的變化情況,通常將剪力和彎矩在全梁范圍內(nèi)變化的規(guī)律用圖形來(lái)表示,這種圖形稱為剪力圖和彎矩圖。作剪力圖和彎矩圖最基本的方法作剪力圖和彎矩圖最基本的方法是:根據(jù)剪力方程和彎矩方程分別繪出剪力圖和彎矩圖。繪圖時(shí),以平行于梁軸線的坐標(biāo)x表示梁橫截面的位置,以垂直于x軸的縱坐標(biāo)(按適當(dāng)?shù)谋壤? 表示相應(yīng)橫截面上的剪力或彎矩。在土建工程中,對(duì)于水平梁而言,習(xí)慣將正剪力作在x軸的上方,負(fù)剪力作在x軸的下方,并標(biāo)明正、負(fù)號(hào);正彎矩作在x軸的下方,負(fù)彎矩作在x軸的上方,即彎矩圖總是作在梁受拉的一側(cè)。對(duì)于非水平梁而言,剪力圖可以作在梁軸線的任一側(cè),并標(biāo)明正、負(fù)號(hào);彎矩圖作在梁受拉的

52、一側(cè)。例4-14 作圖4-47a所示懸臂梁在集中力作用下的剪力圖和彎矩圖。解 因?yàn)閳D示梁為懸臂梁,所以可以不求支座反力。(1)列剪力方程和彎矩方程。將坐標(biāo)原點(diǎn)假定在左端點(diǎn)A處,并取距A端為x的截面左側(cè)研究。剪力方程為彎矩方程為(2)作剪力圖和彎矩圖。剪力方程為x的常函數(shù),所以不論x取何值剪力恒等于-FP,剪力圖為一條與x軸平行的直線,而且在z軸的下方。剪力圖如圖4-47b所示。彎矩方程為z的一次函數(shù),所以彎矩圖為一條斜直線。由于不論z取何值彎矩均為負(fù)值,所以彎矩圖應(yīng)作在x軸的上方。圖4-47作彎矩圖如圖4-47c所示。與作桿件的軸力圖、扭矩圖類似,在作出的剪力圖上要標(biāo)出控制截面的內(nèi)力值、剪力的

53、正負(fù)號(hào),作出垂直于x軸的細(xì)直線;而彎矩圖比較特殊,由于彎矩圖總是作在梁受拉的一側(cè),因此可以不標(biāo)正負(fù)號(hào),其他要求同剪力圖。例4-15 作圖4-48a所示簡(jiǎn)支梁在集中力作用下的剪力圖和彎矩圖。解 (1)求支座反力。取整體梁為隔離體,由平衡方程圖4-48(2)列剪力方程和彎矩方程。經(jīng)過(guò)觀察注意到:該梁在C截面上作用一個(gè)集中力,使AC段和CB段的剪力方程和彎矩方程不同,因此列方程時(shí)要將梁從C截面處分成兩段。Ac段:在AC段上距A端為z1的任意截面處將梁截開(kāi),取左段研究,根據(jù)左段上的外力直接列方程CB段:在CB段上距B端為x2的任意截面處將梁截開(kāi),取右段研究,根據(jù)右段上的外力直接列方程(3)作剪力圖和彎

54、矩圖。根據(jù)剪力方程和彎矩方程判斷剪力圖和彎矩圖的形狀,確定控制截面的個(gè)數(shù)及內(nèi)力值,作圖。剪力圖:AC段和CB段的剪力方程均是x的常函數(shù),所以AC段、CB段的剪力圖都是與z軸平行的直線,每段上只需要計(jì)算一個(gè)控制截面的剪力值。AC段:剪力值為,圖形在x軸的上方。CB段:剪力值為圖形在z軸的下方。彎矩圖:AC段和CB段的彎矩方程均是x的一次函數(shù),所以AC段、CB段的彎矩圖都是一條斜直線,每段上需要分別計(jì)算兩個(gè)控制截面的彎矩值。AC段:將及兩點(diǎn)連線即可以作出AC段的彎矩圖。CB段:將及兩點(diǎn)連線即可以作出CB段的彎矩圖。作出的剪力圖、彎矩圖如圖4-48b、C所示。注意:應(yīng)將內(nèi)力圖與梁的計(jì)算簡(jiǎn)圖對(duì)齊。在寫(xiě)

55、出圖名(FQ圖、M圖)、控制截面內(nèi)力值、標(biāo)明內(nèi)力正、負(fù)號(hào)的情況下,可以不作出坐標(biāo)軸。習(xí)慣上作圖時(shí)常用這種方法。由彎矩圖可知:簡(jiǎn)支梁上只有一個(gè)集中力作用時(shí)。在集中力作用處彎矩出現(xiàn)最大值,;若集中力正好作用在梁的跨中,即時(shí)。彎矩的最大值為。這個(gè)結(jié)論在今后學(xué)習(xí)疊加法時(shí)經(jīng)常用到,要特別注意。由例4-14和例4-15可以看出:在梁上無(wú)荷載作用的區(qū)段,其剪力圖都是平行于x軸的直線。在集中力作用處,剪力圖是不連續(xù)的,我們稱之為剪力圖突變,突變的絕對(duì)值等于集中力的數(shù)值;在梁上無(wú)荷載作用的區(qū)段,其彎矩圖是斜直線,在集中力作用處,彎矩圖發(fā)生轉(zhuǎn)折,出現(xiàn)尖角現(xiàn)象。例4-16 作圖4-49a所示外伸梁在集中力偶作用下的剪力圖、彎矩圖。已知:。解 (1)求支座反力。取梁AD為隔離體,由平衡方程(2)列剪力方程和彎矩方程。以梁的端截面、集中力、集中力偶的作用截面為分段的界限,將梁分成AB、BC、CD三段。AB段:在AB段的任意位置x1,處取截面,并取截面左側(cè)研究,由作用在左側(cè)梁段上的外力可知:BC段:

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論