版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、 第一章反比例函數(shù)知識點(diǎn):1.定義:形如y(k為常數(shù),k0)的函數(shù)稱為反比例函數(shù)。其中x是自變量,y是函數(shù),自變量x的取值是不等于0的一切實(shí)數(shù)。說明:1)y的取值范圍是一切非零的實(shí)數(shù)。2)反比例函數(shù)可以理解為兩個變量的乘積是一個不為0的常數(shù),因此其解析式也可以寫成xy=k ;(k為常數(shù),k0)3)反比例函數(shù)y(k為常數(shù),k0)的左邊是函數(shù),右邊是分母為自變量x的分式,也就是說,分母不能是多項式,只能是x的一次單項式,如,等都是反比例函數(shù),但就不是關(guān)于x的反比例函數(shù)。2. 用待定系數(shù)法求反比例函數(shù)的解析式由于反比例函數(shù)y只有一個待定系數(shù),因此只需要知道一組對應(yīng)值,就可以求出k的值,從而確定其解析
2、式。3. 反比例函數(shù)的畫法: 1)列表;2)描點(diǎn);3)連線注:(1)列表取值時,x0,因?yàn)閤0函數(shù)無意義,為了使描出的點(diǎn)具有代表性,可以“0”為中心,向兩邊對稱式取值,即正、負(fù)數(shù)各一半,且互為相反數(shù),這樣也便于求y值(2)由于函數(shù)圖象的特征還不清楚,所以要盡量多取一些數(shù)值,多描一些點(diǎn),這樣便于連線,使畫出的圖象更精確(3)連線時要用平滑的曲線按照自變量從小到大的順序連接,切忌畫成折線(4)由于x0,k0,所以y0,函數(shù)圖象永遠(yuǎn)不會與x軸、y軸相交,只是無限靠近兩坐標(biāo)軸4. 圖像:反比例函數(shù)的圖像屬于雙曲線。反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和 y= x;對
3、稱中心是:原點(diǎn)5. 性質(zhì):反比例函數(shù)y(k為常數(shù),k0)k的取值k0k0圖像性質(zhì)a) x的取值范圍是x0;y的取值范圍是y0;b) 函數(shù)的圖像兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大。a) x的取值范圍是x0;y的取值范圍是y0;b) 函數(shù)的圖像兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減小。說明:1)反比例函數(shù)的增減性不連續(xù),在討論函數(shù)增減問題時,必須有“在每一個象限內(nèi)”這一條件。 2)反比例函數(shù)圖像的兩個分只可以無限地接近x軸、y軸,但與x軸、y軸沒有交點(diǎn)。 3)越大,圖象的彎曲度越小,曲線越平直越小,圖象的彎曲度越大 4)對稱性:圖象關(guān)于原點(diǎn)對稱,即
4、若(a,b)在雙曲線的一支上,則(,)在雙曲線的另一支上 圖象關(guān)于直線對稱,即若(a,b)在雙曲線的一支上,則(,)和(,)在雙曲線的另一支上6. 反比例函數(shù)y(k0)中的比例系數(shù)k的幾何意義表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積。如圖,過雙曲線y(k0)上的任意一點(diǎn)P(x , y)做x軸、y軸的垂線PA、PB,所得矩形OBPA的面積S=PA·PB=xy=k。 推出:過雙曲線上的任意一點(diǎn)做坐標(biāo)軸的垂線,連接原點(diǎn),所得三角形的面積為7. 經(jīng)典例題考察:1)反比例關(guān)系與反比例函數(shù)的區(qū)別和聯(lián)系:如果xy=k(k0),那么x與y這兩個量成反比例的關(guān)系,這里的
5、x、y可以表示單獨(dú)的一個字母,也可以代表多項式或單項式。例如y1與x+1成反比例,則;若y與x2 成反比例,則成反比例關(guān)系,x和y不一定是反比例函數(shù);但反比例函數(shù)(k0)必成反比例關(guān)系。2)坐標(biāo)系中的求不規(guī)則圖形的面積3)反比例函數(shù)與一次函數(shù)、正比例函數(shù)的綜合題8 反比例函數(shù)與一次函數(shù)的聯(lián)系(1)雙曲線的兩個分支是斷開的,研究反比例函數(shù)的增減性時,要將兩個分支分別討論,不能一概而論(2)直線與雙曲線的關(guān)系:當(dāng)時,兩圖象沒有交點(diǎn);當(dāng)時,兩圖象必有兩個交點(diǎn),且這兩個交點(diǎn)關(guān)于原點(diǎn)成中心對稱8. 實(shí)際問題與反比例函數(shù)的應(yīng)用 1)步驟:分析問題,列解析式建立反比例函數(shù)模型利用反比例函數(shù)解決相關(guān)問題,建立
6、反比例函數(shù)模型是解決問題的關(guān)鍵。 思路:題目中已明確兩變量的函數(shù)關(guān)系,常利用待定系數(shù)法求出函數(shù)解析式。 題目中不能確定變量間的函數(shù)關(guān)系,找出等量關(guān)系,將變量聯(lián)系起來就能得到函數(shù)關(guān)系式,并解決問題。 2)反比例函數(shù)的應(yīng)用 (1)反比例函數(shù)在幾何問題中的應(yīng)用。求實(shí)際問題中的面積 (2)反比例函數(shù)在其他學(xué)科中的應(yīng)用,a) 物理學(xué)中,電壓一定時,電阻R與電流強(qiáng)度I成反比例函數(shù),b) 當(dāng)在一個可以改變體積的容器中裝入一定質(zhì)量的氣體時,當(dāng)改變?nèi)萜鞯捏w積時,氣體的密度也會隨之改變,密度(單位:kg/m3)是體積的反比例函數(shù),解析式可以表達(dá)為c) 收音機(jī)刻度盤的波長與頻率關(guān)系式: d) 壓力F一定時,壓強(qiáng)P與
7、受力面積S成反比例關(guān)系,即e) 當(dāng)汽車輸出功率P一定時,汽車行駛速度與汽車所受的負(fù)載即阻力F成反比例關(guān)系,(3) 反比例函數(shù)在日常生活中的應(yīng)用:路程問題、工程問題等。 注:實(shí)際問題中一定要注意自變量x的取值范圍。重點(diǎn):反比例函數(shù)的概念的理解和掌握,反比例函數(shù)的圖象及其性質(zhì)的理解、掌握和運(yùn)用難點(diǎn):(1)反比例函數(shù)及其圖象的性質(zhì)的理解和掌握反比例函數(shù)的圖像是雙曲線,在利用它的增、減性解題時,必須注意“在每一象限內(nèi)”的條件。(2)反比例函數(shù)的應(yīng)用:從實(shí)際問題中抽象出反比例函數(shù)的模型。用待定系數(shù)法求出反比例函數(shù)的解析式,再用反比例函數(shù)的規(guī)律解決實(shí)際問題??键c(diǎn):與反比例函數(shù)有關(guān)的問題,幾乎在歷屆中考中都
8、可以找到。其主要命題點(diǎn)為:(1)反比例函數(shù)的定義;(2)反比例函數(shù)的圖像及性質(zhì);(3)求反比例函數(shù)的解析式;(4)反比例函數(shù)與實(shí)際問題的應(yīng)用;(5)反比例函數(shù)與一次函數(shù)的綜合。題型主要有選擇題、填空題、還有解答題。 二次函數(shù)知識點(diǎn):1.定義:一般地,如果是常數(shù),那么叫做的二次函數(shù).2.二次函數(shù)的性質(zhì)(1)拋物線的頂點(diǎn)是坐標(biāo)原點(diǎn),對稱軸是軸.(2)函數(shù)的圖像與的符號關(guān)系. 時拋物線開口向上頂點(diǎn)為其最低點(diǎn);當(dāng)時拋物線開口向下頂點(diǎn)為其最高點(diǎn)3.二次函數(shù) 的圖像是對稱軸平行于(包括重合)軸的拋物線.4.二次函數(shù)用配方法可化成:的形式,其中.5.二次函數(shù)由特殊到一般,可分為以下幾種形式:;.6.拋物線的
9、三要素:開口方向、對稱軸、頂點(diǎn).決定拋物線的開口方向:當(dāng)時,開口向上;當(dāng)時,開口向下;相等,拋物線的開口大小、形狀相同.平行于軸(或重合)的直線記作.特別地,軸記作直線.7.頂點(diǎn)決定拋物線的位置.幾個不同的二次函數(shù),如果二次項系數(shù)相同,那么拋物線的開口方向、開口大小完全相同,只是頂點(diǎn)的位置不同.8.求拋物線的頂點(diǎn)、對稱軸的方法(1)公式法:,頂點(diǎn)是,對稱軸是直線.(2)配方法:運(yùn)用配方法將拋物線的解析式化為的形式,得到頂點(diǎn)為(,),對稱軸是.(3)運(yùn)用拋物線的對稱性:由于拋物線是以對稱軸為軸的軸對稱圖形,所以對稱軸的連線的垂直平分線是拋物線的對稱軸,對稱軸與拋物線的交點(diǎn)是頂點(diǎn).用配方法求得的頂
10、點(diǎn),再用公式法或?qū)ΨQ性進(jìn)行驗(yàn)證,才能做到萬無一失9.拋物線中,的作用(1)決定開口方向及開口大小,這與中的完全一樣.(2)和共同決定拋物線對稱軸的位置.由于拋物線的對稱軸是直線,故:時,對稱軸為軸;(即、同號)時,對稱軸在軸左側(cè);(即、異號)時,對稱軸在軸右側(cè).(3)的大小決定拋物線與軸交點(diǎn)的位置.當(dāng)時,拋物線與軸有且只有一個交點(diǎn)(0,):,拋物線經(jīng)過原點(diǎn); ,與軸交于正半軸;,與軸交于負(fù)半軸.以上三點(diǎn)中,當(dāng)結(jié)論和條件互換時,仍成立.如拋物線的對稱軸在軸右側(cè),則 .10.幾種特殊的二次函數(shù)的圖像特征如下:函數(shù)解析式開口方向?qū)ΨQ軸頂點(diǎn)坐標(biāo)當(dāng)時開口向上當(dāng)時開口向下(軸)(0,0)(軸)(0, )(
11、,0)(,)()11.用待定系數(shù)法求二次函數(shù)的解析式(1)一般式:.已知圖像上三點(diǎn)或三對、的值,通常選擇一般式. (2)頂點(diǎn)式:.已知圖像的頂點(diǎn)或?qū)ΨQ軸,通常選擇頂點(diǎn)式. (3)交點(diǎn)式:已知圖像與軸的交點(diǎn)坐標(biāo)、,通常選用交點(diǎn)式:.12.直線與拋物線的交點(diǎn)(1)軸與拋物線得交點(diǎn)為() (2)與軸平行的直線與拋物線有且只有一個交點(diǎn)(,). (3)拋物線與軸的交點(diǎn)二次函數(shù)的圖像與軸的兩個交點(diǎn)的橫坐標(biāo)、,是對應(yīng)一元二次方程的兩個實(shí)數(shù)根.拋物線與軸的交點(diǎn)情況可以由對應(yīng)的一元二次方程的根的判別式判定:有兩個交點(diǎn)拋物線與軸相交;有一個交點(diǎn)(頂點(diǎn)在軸上)拋物線與軸相切;沒有交點(diǎn)拋物線與軸相離.(4)平行于軸的
12、直線與拋物線的交點(diǎn)同(3)一樣可能有0個交點(diǎn)、1個交點(diǎn)、2個交點(diǎn).當(dāng)有2個交點(diǎn)時,兩交點(diǎn)的縱坐標(biāo)相等,設(shè)縱坐標(biāo)為,則橫坐標(biāo)是的兩個實(shí)數(shù)根.(5)一次函數(shù)的圖像與二次函數(shù)的圖像的交點(diǎn),由方程組的解的數(shù)目來確定:方程組有兩組不同的解時與有兩個交點(diǎn); 方程組只有一組解時與只有一個交點(diǎn);方程組無解時與沒有交點(diǎn).(6)拋物線與軸兩交點(diǎn)之間的距離:若拋物線與軸兩交點(diǎn)為,由于、是方程的兩個根,故 13二次函數(shù)與一元二次方程的關(guān)系:(1)一元二次方程就是二次函數(shù)當(dāng)函數(shù)y的值為0時的情況(2)二次函數(shù)的圖象與軸的交點(diǎn)有三種情況:有兩個交點(diǎn)、有一個交點(diǎn)、沒有交點(diǎn);當(dāng)二次函數(shù)的圖象與軸有交點(diǎn)時,交點(diǎn)的橫坐標(biāo)就是當(dāng)時
13、自變量的值,即一元二次方程的根(3)當(dāng)二次函數(shù)的圖象與軸有兩個交點(diǎn)時,則一元二次方程有兩個不相等的實(shí)數(shù)根;當(dāng)二次函數(shù)的圖象與軸有一個交點(diǎn)時,則一元二次方程有兩個相等的實(shí)數(shù)根;當(dāng)二次函數(shù)的圖象與軸沒有交點(diǎn)時,則一元二次方程沒有實(shí)數(shù)根14、二次函數(shù)圖象的對稱 二次函數(shù)圖象的對稱一般有五種情況,可以用一般式或頂點(diǎn)式表達(dá) 1. 關(guān)于軸對稱 關(guān)于軸對稱后,得到的解析式是; 關(guān)于軸對稱后,得到的解析式是; 2. 關(guān)于軸對稱 關(guān)于軸對稱后,得到的解析式是; 關(guān)于軸對稱后,得到的解析式是; 3. 關(guān)于原點(diǎn)對稱 關(guān)于原點(diǎn)對稱后,得到的解析式是; 關(guān)于原點(diǎn)對稱后,得到的解析式是;4. 關(guān)于頂點(diǎn)對稱(即:拋物線繞頂
14、點(diǎn)旋轉(zhuǎn)180°) 關(guān)于頂點(diǎn)對稱后,得到的解析式是;關(guān)于頂點(diǎn)對稱后,得到的解析式是 5. 關(guān)于點(diǎn)對稱 關(guān)于點(diǎn)對稱后,得到的解析式是 根據(jù)對稱的性質(zhì),顯然無論作何種對稱變換,拋物線的形狀一定不會發(fā)生變化,因此永遠(yuǎn)不變求拋物線的對稱拋物線的表達(dá)式時,可以依據(jù)題意或方便運(yùn)算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點(diǎn)坐標(biāo)及開口方向,再確定其對稱拋物線的頂點(diǎn)坐標(biāo)及開口方向,然后再寫出其對稱拋物線的表達(dá)式15.二次函數(shù)的應(yīng)用:(1)二次函數(shù)常用來解決最優(yōu)化問題,這類問題實(shí)際上就是求函數(shù)的最大(小)值;(2)二次函數(shù)的應(yīng)用包括以下方面:分析和表示不同背景下實(shí)際問題中
15、變量之間的二次函數(shù)關(guān)系;運(yùn)用二次函數(shù)的知識解決實(shí)際問題中的最大(小)值15.解決實(shí)際問題時的基本思路:(1)理解問題;(2)分析問題中的變量和常量;(3)用函數(shù)表達(dá)式表示出它們之間的關(guān)系;(4)利用二次函數(shù)的有關(guān)性質(zhì)進(jìn)行求解;(5)檢驗(yàn)結(jié)果的合理性,對問題加以拓展等重難點(diǎn):二次函數(shù)的圖像與性質(zhì),二次函數(shù)與一元二次方程的關(guān)系,用二次函數(shù)解決實(shí)際問題。考點(diǎn):二次函數(shù)在中考中占有很重要的地位,是中考中的必考內(nèi)容。中考的主要命題點(diǎn)為:(1)求二次函數(shù)的關(guān)系式(2)拋物線的頂點(diǎn)、開口方向和對稱軸(3)二次函數(shù)的最大(?。┲担?)拋物線(a0)與a,b,c的符號(5)二次函數(shù)與一元二次方程(6)二次函數(shù)的
16、簡單實(shí)際問題等。題型主要有選擇題、填空題、解答題,還有探究題和開放題。有關(guān)二次函數(shù)的熱點(diǎn)問題仍然是函數(shù)型應(yīng)用題與方程、幾何知識、三角函數(shù)等知識綜合在一起的綜合題、探究題和開放題。圓的基本性質(zhì)知識點(diǎn):1.圓的有關(guān)概念(1)圓心、半圓、同心圓、等圓、弦與弧。(2)直徑是經(jīng)過圓心的弦。是圓中最長的弦。弧是圓的一部分。2.圓周角與圓心角(1)一條弧所對的圓周角等于它所對的圓心角的一半。 (2)圓周角與半圓或直徑:半圓或直徑所對的圓周角是直角;圓周角所對的弦是圓的直徑。(3)圓周角與半圓或等?。和』虻然∷鶎Φ膱A周角相等;在同圓或等圓中,相等的圓周角所對的弧相等。3.圓的對稱性(1)圓是中心對稱圖形,圓
17、心是它的對稱中心。(2)圓的旋轉(zhuǎn)不變性:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其他各組量分別相等。(3)圓的軸對稱性:經(jīng)過圓心都的任意一條直線都是它的對稱軸。垂徑定理是研究有關(guān)圓的知識的基礎(chǔ)。垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的兩條弧。還可以概括為:如果有一條直線,1.垂直于弦;2.經(jīng)過圓心;3.平分弦(非直徑);4.平分弦所對的優(yōu)?。?.平分弦所對的劣弧,同時具備其中任意兩個條件,那么就可以得到其他三個結(jié)論。4.弧長及扇形的面積弧長公式:圓弧是圓的一部分,若將圓周分為360份,1°的圓心角所對的弧是圓周長的,因?yàn)榘霃綖閞的圓周長是
18、2r,所以n°的圓心角所對的弧長的計算公式為(其中,為弧長,n為弧所對的圓心角度數(shù),r為弧所在圓的半徑)扇形的面積公式:1·扇形的定義:一條弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫做扇形,如圖,和半徑OA、OB所組成的圖形是一個扇形,讀作扇形OAB2·扇形的周長扇形的周長等于弧長與兩半徑的長之和,即3·扇形是圓面的一部分,若將半徑為r的圓分為360份,圓心角1°的扇形面積是圓面積的,因?yàn)榘霃綖閞的圓的面積是,所以半徑為r,圓心角為n°的扇形面積為4·弧長為,半徑為r的扇形面積為5·扇形面積的應(yīng)用(求圓的一部分的
19、面積):5.圓錐的側(cè)面積和全面積圓錐的側(cè)面展開圖是一個扇形,如圖,設(shè)圓錐的母線長為l,底面圓的半徑為r,那么這個圓錐的側(cè)面展開圖中扇形的半徑即為母線長l,扇形的弧長即為底面圓的周長2r,根據(jù)扇形面積公式可知S·2r·lrl因此圓錐的側(cè)面積為S側(cè)rl圓錐的側(cè)面積與底面積之和稱為圓錐的全面積,全面積為S全=r2+rl重點(diǎn):1.弦和弧的概念、弧的表示方法和點(diǎn)與圓的位置關(guān)系。2.用尺規(guī)作圖法對不在同一直線上的三個點(diǎn)作圓。3.垂徑定理。(重中之重:“垂直于弦的直徑平分弦和弧”經(jīng)常考)4.扇形弧長和面積、圓錐側(cè)面積和體積的計算。難點(diǎn):1.對“不在同一直線上的三個點(diǎn)確定一個圓”中的存在性
20、和唯一性的理解2. 圓錐側(cè)面積計算公式的推導(dǎo)過程需要較強(qiáng)的空間想像能力3. 類似螞蟻爬圓錐的計算問題。4.有關(guān)圓的無圖多解問題。考點(diǎn):1 垂直于弦的直徑2 圓周角定理及其推論3 圓內(nèi)接四邊形4 圓周角、圓心角、弧、弦、弦心距之間的關(guān)系5 圓的性質(zhì)綜合題相似三角形知識點(diǎn):1 相似圖形形狀相同的圖形叫相似圖形,在相似多邊形中,最簡單的是相似三角形. 2 比例線段的相關(guān)概念如果選用同一單位量得兩條線段的長度分別為,那么就說這兩條線段的比是,或?qū)懗勺⒁猓涸谇缶€段比時,線段單位要統(tǒng)一,單位不統(tǒng)一應(yīng)先化成同一單位在四條線段中,如果的比等于的比,那么這四條線段叫做成比例線段,簡稱比例線段注意:(1) 當(dāng)兩個
21、比例式的每一項都對應(yīng)相同,兩個比例式才是同一比例式(2)比例線段是有順序的,如果說是的第四比例項,那么應(yīng)得比例式為:3 比例的性質(zhì) 基本性質(zhì):(1);(2)注意:由一個比例式只可化成一個等積式,而一個等積式共可化成八個比例式,如,除了可化為,還可化為,更比性質(zhì)(交換比例的內(nèi)項或外項):反比性質(zhì)(把比的前項、后項交換):合比性質(zhì):注意:實(shí)際上,比例的合比性質(zhì)可擴(kuò)展為:比例式中等號左右兩個比的前項,后項之間發(fā)生同樣和差變化比例仍成立如:等等等比性質(zhì):如果,那么注意:(1) 此性質(zhì)的證明運(yùn)用了“設(shè)法” ,這種方法是有關(guān)比例計算,變形中一種常用方法(2)應(yīng)用等比性質(zhì)時,要考慮到分母是否為零(3)可利用
22、分式性質(zhì)將連等式的每一個比的前項與后項同時乘以一個數(shù),再利用等比性質(zhì)也成立如:;其中4 比例線段的有關(guān)定理平行線分線段成比例定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例推論:(1)平行于三角形一邊的直線截其它兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例(2)平行于三角形一邊并且和其它兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形第三邊5 黃金分割把線段分成兩條線段,且使是的比例中項,叫做把線段黃金分割,點(diǎn)叫做線段的黃金分割點(diǎn),其中0.6186 相似三角形的概念對應(yīng)角相等,對應(yīng)邊成比例
23、的三角形,叫做相似三角形相似用符號“”表示,讀作“相似于” 相似三角形對應(yīng)邊的比叫做相似比(或相似系數(shù))相似三角形對應(yīng)角相等,對應(yīng)邊成比例注意:對應(yīng)性:即兩個三角形相似時,通常把表示對應(yīng)頂點(diǎn)的字母寫在對應(yīng)位置上,這樣寫比較容易找到相似三角形的對應(yīng)角和對應(yīng)邊順序性:相似三角形的相似比是有順序的兩個三角形形狀一樣,但大小不一定一樣全等三角形是相似比為1的相似三角形二者的區(qū)別在于全等要求對應(yīng)邊相等,而相似要求對應(yīng)邊成比例7 相似三角形的基本定理定理:平行于三角形一邊的直線和其它兩邊(或兩邊延長線)相交,所構(gòu)成的三角形與原三角形相似定理的基本圖形:用數(shù)學(xué)語言表述是:,8 相似三角形的等價關(guān)系(1) 反
24、身性:對于任一有 (2) 對稱性:若,則 (3) 傳遞性:若,且,則9 三角形相似的判定方法1、 定義法:對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形相似2、 平行法:平行于三角形一邊的直線和其它兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似3、判定定理1:如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似簡述為:兩角對應(yīng)相等,兩三角形相似4、判定定理2:如果一個三角形的兩條邊和另一個三角形的兩條邊對應(yīng)成比例,并且夾角相等,那么這兩個三角形相似簡述為:兩邊對應(yīng)成比例且夾角相等,兩三角形相似5、判定定理3:如果一個三角形的三條邊與另一個三角形的三條邊對應(yīng)成比例,那么這兩
25、個三角形相似簡述為:三邊對應(yīng)成比例,兩三角形相似6、判定直角三角形相似的方法:(1)以上各種判定均適用(2) 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似(3)直角三角形被斜邊上的高分成的兩個直角三角形與原三角形相似直角三角形中,斜邊上的高是兩直角邊在斜邊上射影的比例中項。每一條直角邊是這條直角邊在斜邊上的射影和斜邊的比例中項。公式 如圖,RtABC中,BAC=90°,AD是斜邊BC上的高,則有射影定理如下:(1)(AD)2=BD·DC,(2)(AB)2=BD·BC ,(3)(AC)2=CD·
26、;BC 。證明:在 BAD與ACD中,B+C=90°,DAC+C=90°,B=DAC,又BDA=ADC=90°,BADACD相似, AD/BDCD/AD,即(AD)2=BD·DC。其余類似可證。注:由上述射影定理還可以證明勾股定理。由公式(2)+(3)得:(AB)2+(AC)2=BD·BC+CD·BC =(BD+CD)·BC=(BC)2,即 (AB)2+(AC)2=(BC)2。這就是勾股定理的結(jié)論。10 相似三角形性質(zhì)(1) 相似三角形對應(yīng)角相等,對應(yīng)邊成比例(2) 相似三角形對應(yīng)高的比,對應(yīng)中線的比和對應(yīng)角平分線的比都等于
27、相似比(3) 相似三角形周長的比等于相似比(4) 相似三角形面積的比等于相似比的平方(5)相似三角形性質(zhì)可用來證明線段成比例、角相等,也可用來計算周長、邊長等11 相似多邊形如果兩個邊數(shù)相同的多邊形的對應(yīng)角相等,對應(yīng)邊成比例,這兩個多邊形叫做相似多邊形相似多邊形對應(yīng)邊的比叫做相似比(相似系數(shù))12 相似多邊形的性質(zhì)(1)相似多邊形周長比,對應(yīng)對角線的比等于相似比(2)相似多邊形中對應(yīng)三角形相似,相似比等于相似多邊形的相似比(3)相似多邊形面積比等于相似比的平方注意:相似多邊形問題往往要轉(zhuǎn)化成相似三角形問題去解決,因此,熟練掌握相似三角形知識是基礎(chǔ)和關(guān)鍵13 與位似圖形有關(guān)的概念 1. 如果兩個
28、圖形不僅是相似圖形,而且每組對應(yīng)頂點(diǎn)的連線都交于一點(diǎn),那么這樣的兩個圖形叫做位似圖形. 2. 這個點(diǎn)叫做位似中心,這時的相似比又稱為位似比. 拓展: (1) 位似圖形是相似圖形的特例,位似圖形不僅相似,而且對應(yīng)頂點(diǎn)的連線相交于一點(diǎn). (2) 位似圖形一定是相似圖形,但相似圖形不一定是位似圖形. (3) 位似圖形的對應(yīng)邊互相平行或共線. 14 位似圖形的性質(zhì) 位似圖形上任意一對對應(yīng)點(diǎn)到位似中心的距離之比等于相似比. 拓展:位似圖形有許多性質(zhì),它具有相似圖形的所有性質(zhì).15 畫位似圖形 1. 畫位似圖形的一般步驟: (1) 確定位似中心 (2) 分別連接原圖形中的關(guān)鍵點(diǎn)和位似中心,并延長(或截?。?/p>
29、. (3) 根據(jù)已知的位似比,確定所畫位似圖形中關(guān)鍵點(diǎn)的位置. (4) 順次連結(jié)上述得到的關(guān)鍵點(diǎn),即可得到一個放大或縮小的圖形. 2. 位似中心的選取: (1) 位似中心可以在圖形外部,此時位似中心在兩個圖形中間,或在兩個圖形之外. (2) 位似中心可取在多邊形的一條邊上. (3) 位似中心可取在多邊形的某一頂點(diǎn)上. 說明:位似中心的選取決定了位似圖形的位置,以上位似中心位置的選取中,每一種方法都能把一個圖形放大或縮小.16 相似三角形常見的圖形(1) 若DEBC(A型和X型)則ADEABC(2) 射影定理 若CD為RtABC斜邊上的高(雙直角圖形) 則RtABCRtACDRtCBD且AC2=
30、AD·AB,CD2=AD·BD,BC2=BD·AB; (3)滿足1、AC2=AD·AB,2、ACD=B,3、ACB=ADC,都可判定ADCACB(4)當(dāng)或AD·AB=AC·AE時,ADEACB (3) (4)重點(diǎn):相似三角形的判定方法及相似三角形的有關(guān)性質(zhì)難點(diǎn):相似三角形性質(zhì)的應(yīng)用考點(diǎn):圖形的相似是平面幾何中極為重要的內(nèi)容。中考的主要命題點(diǎn)為:(1) 比例的性質(zhì)和黃金分割(2) 相似三角形的定義及相似三角形的判定(3) 相似三角形的性質(zhì)及其應(yīng)用(4) 相似多邊形的定義和性質(zhì)(5) 位似圖形及其作圖等。題型主要為選擇題、填空題、解答題等
31、,選擇題、填空題將注重“相似三角的判定與性質(zhì)”等基礎(chǔ)知識的考查,將在解答題中加大知識的橫向與縱向聯(lián)系及應(yīng)用問題的力度。九下第一章解直角三角形知識點(diǎn):一、 銳角三角函數(shù)的定義:在中,C=90°,、分別是A、B、C的對邊,則: 常用變形:;等,由同學(xué)們自行歸納。二、 銳角三角函數(shù)的有關(guān)性質(zhì):1、 當(dāng)0°<A<90°時,; 2、 在0°90°之間,正弦、正切(、)的值,隨角度的增大而增大;余弦()的值,隨角度的增大而減小。三、 同角三角函數(shù)的關(guān)系: 常用變形: (用定義證明,易得,同學(xué)自行完成)四、 正弦與余弦,正切與余切的轉(zhuǎn)換關(guān)系:如圖
32、1,由定義可得: 同理可得: 五、 特殊角的三角函數(shù)值:三角函數(shù)30°45°160°六、 解直角三角形的基本類型及其解法總結(jié):類型已知條件解法兩邊兩直角邊、,直角邊 ,斜邊,一邊一銳角直角邊,銳角A,斜邊,銳角A,重點(diǎn):一、三角函數(shù)1 特殊角的三角函數(shù)值:0°30°45°60°90°sincostg /2 互余兩角的三角函數(shù)關(guān)系:sin(90°-)=cos;3 三角函數(shù)值隨角度變化的關(guān)系二、解直角三角形1 定義:已知邊和角(兩個,其中必有一邊)所有未知的邊和角。2 依據(jù):邊的關(guān)系:角的關(guān)系:A+B=90&
33、#176;邊角關(guān)系:三角函數(shù)的定義。 注意:盡量避免使用中間數(shù)據(jù)和除法。三、對實(shí)際問題的處理仰角俯角北東西南hlii=h/l=tg1 俯、仰角: 2方位角、象限角: 3坡度:4在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。難點(diǎn):1、 銳角三角函數(shù)的概念2、 直角三角形的解法3、 三角函數(shù)在解直角三角形中的靈活運(yùn)用考點(diǎn):1中考重點(diǎn)考查正弦、余弦的基本概念和求特殊角的三角函數(shù)值,及利用正弦和余弦解決一些比較簡單的直角三角形問題2中考側(cè)重考查求特殊角的正切值、余切值,利用正切求線段的長以及綜合應(yīng)用三角函數(shù)解決測量問題3考查三角形的邊角關(guān)系是中考常見題型,解決此類問題的方法是將一
34、般圖形轉(zhuǎn)化為解直角三角形的知識來解決。有時需要添加輔助線4中考中的三角函數(shù)與圓的綜合題是熱點(diǎn)題型解決這類問題的方法是利用勾股定理、銳角三角函數(shù)關(guān)系式5中考解直角三角形應(yīng)用問題大多是以計算題的形式出現(xiàn)也是中考的熱點(diǎn)題型九下第二章直線與圓,圓與圓的位置關(guān)系知識點(diǎn):1. 直線與圓有三種位置關(guān)系(1) 相交 直線與圓有兩個公共點(diǎn)時,我們說直線與圓相交。(2) 相切 直線與圓有唯一的公共點(diǎn)時,我們說直線與圓相切。這條直線叫圓的切線,公共點(diǎn)叫切點(diǎn)。(3) 相離直線與圓沒有公共點(diǎn)時,我們說直線與圓相離。(4) 一般地,直線與圓的位置關(guān)系有下面的性質(zhì): 若圓的半徑為,圓心到直線的距離為,那么直線與圓相交直線與圓相切直線與圓相離2. 切線的判
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年限:跨境電子商務(wù)平臺運(yùn)營合同
- 2024年項目合同管理與招投標(biāo)策略比較分析3篇
- 2024年高端餐具采購供應(yīng)合作合同版
- 2024年項目托管管理合同
- 2024年跨區(qū)域水資源調(diào)配與利用合同
- 2024玉器行業(yè)廣告代理與購銷合同范本3篇
- 政工師個人述職報告格式【三篇】
- 2024路沿石石材深加工采購合同3篇
- 2019初級會計實(shí)務(wù)-第六章:財務(wù)報表-資產(chǎn)負(fù)債表
- 顱內(nèi)動脈瘤血管內(nèi)介入治療中國專家共識-2103
- 外科醫(yī)師手術(shù)技能評分標(biāo)準(zhǔn)
- 保姆級別CDH安裝運(yùn)維手冊
- 采購控制程序
- 菌草技術(shù)及產(chǎn)業(yè)化應(yīng)用課件
- 六年級上冊數(shù)學(xué)簡便計算題200題專項練習(xí)
- GB∕T 14527-2021 復(fù)合阻尼隔振器和復(fù)合阻尼器
- 隧道二襯、仰拱施工方案
- 顫?。ㄅ两鹕。┲嗅t(yī)護(hù)理常規(guī)
- 果膠項目商業(yè)計劃書(模板范本)
- 旋挖鉆成孔掏渣筒沉渣處理施工工藝
- 安全資料目錄清單
評論
0/150
提交評論