版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、6.1正弦函數(shù)和余弦函數(shù)的圖像與性質(zhì)一、復(fù)習(xí)引入1、復(fù)習(xí)(1)函數(shù)的概念在某個(gè)變化過(guò)程中有兩個(gè)變量、,若對(duì)于在某個(gè)實(shí)數(shù)集合內(nèi)的每一個(gè)確定的值,按照某個(gè)對(duì)應(yīng)法則,都有唯一確定的實(shí)數(shù)值與它對(duì)應(yīng),則就是的函數(shù),記作,。(2)三角函數(shù)線設(shè)任意角的頂點(diǎn)在原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊與單位圓相交于點(diǎn),過(guò)作軸的垂線,垂足為;過(guò)點(diǎn)作單位圓的切線,設(shè)它與角的終邊(當(dāng)在第一、四象限角時(shí))或其反向延長(zhǎng)線(當(dāng)為第二、三象限角時(shí))相交于.規(guī)定:當(dāng)與軸同向時(shí)為正值,當(dāng)與軸反向時(shí)為負(fù)值; 當(dāng)與軸同向時(shí)為正值,當(dāng)與軸反向時(shí)為負(fù)值; 當(dāng)與軸同向時(shí)為正值,當(dāng)與軸反向時(shí)為負(fù)值;根據(jù)上面規(guī)定,則,由正弦、余弦、正切三角比的定義
2、有:;這幾條與單位圓有關(guān)的有向線段叫做角的正弦線、余弦線、正切線。二、講授新課【問(wèn)題驅(qū)動(dòng)1】結(jié)合我們剛學(xué)過(guò)的三角比,就以正弦(或余弦)為例,對(duì)于每一個(gè)給定的角和它的正弦值(或余弦值)之間是否也存在一種函數(shù)關(guān)系?若存在,請(qǐng)對(duì)這種函數(shù)關(guān)系下一個(gè)定義;若不存在,請(qǐng)說(shuō)明理由1、正弦函數(shù)、余弦函數(shù)的定義(1)正弦函數(shù):;(2)余弦函數(shù):【問(wèn)題驅(qū)動(dòng)2】如何作出正弦函數(shù)、余弦函數(shù)的函數(shù)圖象?2、正弦函數(shù)的圖像(1)的圖像【方案1】幾何描點(diǎn)法步驟1:等分、作正弦線將單位圓等分,作三角函數(shù)線(正弦線)得三角函數(shù)值;步驟2:描點(diǎn)平移定點(diǎn),即描點(diǎn);步驟3:連線用光滑的曲線順次連結(jié)各個(gè)點(diǎn)小結(jié):幾何描點(diǎn)法作圖精確,但過(guò)
3、程比較繁?!痉桨?】五點(diǎn)法步驟1:列表列出對(duì)圖象形狀起關(guān)鍵作用的五點(diǎn)坐標(biāo);步驟2:描點(diǎn)定出五個(gè)關(guān)鍵點(diǎn);步驟3:連線用光滑的曲線順次連結(jié)五個(gè)點(diǎn)小結(jié):的五個(gè)關(guān)鍵點(diǎn)是、。(2)的圖像由,所以函數(shù)在區(qū)間上的圖像與在區(qū)間上的圖像形狀一樣,只是位置不同.于是我們只要將函數(shù)的圖像向左、右平行移動(dòng)(每次平行移動(dòng)個(gè)單位長(zhǎng)度),就可以得到正弦函數(shù)的圖像。3、余弦函數(shù)的圖像(1)的圖像(2)的圖像 圖像平移法 由,可知只須將的圖像向左平移即可。三、例題舉隅例、作出函數(shù)的大致圖像;【設(shè)計(jì)意圖】考察利用“五點(diǎn)法”作正弦函數(shù)、余弦函數(shù)圖像【解】列表描點(diǎn)在直角坐標(biāo)系中,描出五個(gè)關(guān)鍵點(diǎn):、 、連線練習(xí)、作出函數(shù)的大致圖像二、
4、性質(zhì)1定義域:正弦函數(shù)、余弦函數(shù)的定義域都是實(shí)數(shù)集R或(,),分別記作:ysinx,xR ycosx,xR2值域因?yàn)檎揖€、余弦線的長(zhǎng)度小于或等于單位圓的半徑的長(zhǎng)度,所以sinx1,cosx1,即1sinx1,1cosx1也就是說(shuō),正弦函數(shù)、余弦函數(shù)的值域都是1,1其中正弦函數(shù)y=sinx,xR當(dāng)且僅當(dāng)x2k,kZ時(shí), 取得最大值1當(dāng)且僅當(dāng)x2k,kZ時(shí),取得最小值1而余弦函數(shù)ycosx,xR當(dāng)且僅當(dāng)x2k,kZ時(shí),取得最大值1當(dāng)且僅當(dāng)x(2k1),kZ時(shí),取得最小值13周期性由sin(x2k)sinx,cos(x2k)cosx (kZ)知:正弦函數(shù)值、余弦函數(shù)值是按照一定規(guī)律不斷重復(fù)地取得的
5、。一般地,對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的每一個(gè)值時(shí),都有f(xT)f(x),那么函數(shù)f(x)就叫做周期函數(shù),非零常數(shù)T叫做這個(gè)函數(shù)的周期。由此可知,2,4,2,4,2k(kZ且k0)都是這兩個(gè)函數(shù)的周期對(duì)于一個(gè)周期函數(shù)f(x),如果在它所有的周期中存在一個(gè)最小的正數(shù),那么這個(gè)最小正數(shù)就叫做f(x)的最小正周期。4奇偶性由sin(x)sinx,cos(x)cosx可知:ysinx為奇函數(shù), ycosx為偶函數(shù)正弦曲線關(guān)于原點(diǎn)O對(duì)稱,余弦曲線關(guān)于y軸對(duì)稱5單調(diào)性結(jié)合上述周期性可知:正弦函數(shù)在每一個(gè)閉區(qū)間2k,2k(kZ)上都是增函數(shù),其值從1增大到1;在每一個(gè)閉區(qū)間
6、2k,2k(kZ)上都是減函數(shù),其值從1減小到1。余弦函數(shù)在每一個(gè)閉區(qū)間(2k1),2k(kZ)上都是增函數(shù),其值從1增加到1;在每一個(gè)閉區(qū)間2k,(2k1)(kZ)上都是減函數(shù),其值從1減小到1y=sinxy= cosx圖 象定義域RR值 域-1,1-1,1最 值當(dāng)且僅當(dāng)x2k,kZ時(shí),取得最大值1當(dāng)且僅當(dāng)x2k,kZ時(shí),取得最小值1當(dāng)且僅當(dāng)x2k,kZ時(shí),取得最大值1當(dāng)且僅當(dāng)x(2k1),kZ時(shí),取得最小值1周期性2p2p奇偶性奇函數(shù)偶函數(shù)單調(diào)性在閉區(qū)間2k,2k(kZ)上單調(diào)遞增,;在閉區(qū)間2k,2k(kZ)上單調(diào)遞減在閉區(qū)間(2k1),2k(kZ)上單調(diào)遞增;在每一個(gè)閉區(qū)間2k,(2k
7、1)(kZ)上單調(diào)遞減典型例題(3個(gè),基礎(chǔ)的或中等難度)例1:求使下列函數(shù)取得最大值的自變量x的集合,并說(shuō)出最大值是什么。(1)ycosx1,xR; (2)ysin2x,xR解:(1)使函數(shù)ycosx1,xR取得最大值的x的集合,就是使函數(shù)ycosx,xR取得最大值的x的集合x(chóng)x2k,kZ。函數(shù)ycosx1,xR的最大值是112。(2)令Z2x,那么xR必須并且只需ZR,且使函數(shù)ysinZ,ZR取得最大值的Z的集合是ZZ2k,kZ由2xZ2k,得xk即 使函數(shù)ysin2x,xR取得最大值的x的集合是xxk,kZ函數(shù)ysin2x,xR的最大值是1。例2:求下列函數(shù)的單調(diào)區(qū)間(1)ycosx (2
8、)y=sin(4x-) (3)y=3sin(-2x)解:(1)由ycosx的圖象可知:?jiǎn)握{(diào)增區(qū)間為2k,(2k1)(kZ)單調(diào)減區(qū)間為(2k1),2k(kZ) (2)當(dāng)2k-4x-2k+,函數(shù)的遞增區(qū)間是-,+(kZ)當(dāng)2k+4x-2k+函數(shù)的遞減區(qū)間是+,+(kZ)(3)當(dāng)2k-2x2k+時(shí),函數(shù)單調(diào)遞減, 函數(shù)單調(diào)遞減區(qū)間是k-,k+(kZ)當(dāng)2k+-2x2k+時(shí),函數(shù)單調(diào)遞增, 函數(shù)單調(diào)遞減區(qū)間是k+,k+(kZ)例3:求下列三角函數(shù)的周期:(1) y=sin(x+) (2) y=cos2x (3) y=3sin(+)解:(1)令z= x+而 sin(2p+z)=sinz 即:f(2p+
9、z)=f (z)f(x+2p)+=f(x+)周期T=2p.(2)令z=2x f (x)=cos2x=cosz=cos(z+2p)=cos(2x+2p)=cos2(x+p)即:f (x+p)=f (x)周期T=p。(3)令z=+則f (x)=3sinz=3sin(z+2p)=3sin(+2p)=3sin()=f (x+4p)周期T=4p。注:yAsin(x)的周期T=。(四)課堂練習(xí)(2個(gè),基礎(chǔ)的或中等難度)1、求使下列函數(shù)y=3-cos取得最大值的自變量x的集合,并說(shuō)出最大值是什么。解:當(dāng)cos=-1,即=2kp+p,kZ,x|x=4kp+2p,kZ ,y=3-cos取得最大值。2、求y=的周
10、期。解:y=(1-cos2x)=-cos2x,T=p。3、求函數(shù)y=3cos(2x+)的單調(diào)區(qū)間。解:當(dāng)2k2x+2k+p時(shí),函數(shù)單調(diào)遞減, 函數(shù)的單調(diào)遞減區(qū)間是k-,k+(kZ)當(dāng)2k-p2x+2k時(shí),函數(shù)單調(diào)遞增, 函數(shù)的單調(diào)遞增區(qū)間是k-,k-(kZ)(五)拓展探究(2個(gè))1、求下列函數(shù)的周期:(1)y=sin(2x+)+2cos(3x-) (2)y=|sinx| (3)y=2sinxcosx+2cos2x-1解:(1)y1=sin(2x+) 最小正周期T1=py2=2cos(3x-) 最小正周期 T2=T為T(mén)1 ,T2的最小公倍數(shù)2pT=2p(2)T=p(3) y=sin2x+cos2
11、x=2sin(2x+)T=p2、求下列函數(shù)的最值:(1)y=sin(3x+)-1 (2)y=sin2x-4sinx+5 (3)y=解:(1)當(dāng)3x+=2kp+即 x= (kÎZ)時(shí),ymax=0當(dāng)3x+=2kp-即x= (kÎZ)時(shí),ymin=-2(2) y=(sinx-2)2+1 當(dāng)x=2kp- kÎZ時(shí),ymax=10當(dāng)x=2kp- kÎZ時(shí),ymin= 2(3) y=-1+當(dāng)x=2kp+p kÎZ時(shí),ymax=2當(dāng)x=2kp kÎZ時(shí), ymin= 作業(yè)一、填空題1、函數(shù)y=cos(x-)的奇偶性是_。2、函數(shù)y=-5sinx+
12、1的最大值是_,此時(shí)相應(yīng)的x的值是_。3、函數(shù)y=sinxcosx的最小正周期是_。4、函數(shù)y=sinxcos(x+)+cosxsin(x+)的最小正周期是_。5、函數(shù)y=3cos(2x+)的單調(diào)遞減區(qū)間是_。6、函數(shù)y=sinx和y=cosx都為減函數(shù)的區(qū)間是_。7、函數(shù)y=sin(-2x)的單調(diào)遞增區(qū)間是_。8、已知函數(shù)y=f(x)是以為周期,且最大值為3,最小值為-1,則這個(gè)函數(shù)的解讀式可以是_。二、選擇題1、函數(shù)y=sinx,x,的值域是 ( )(A)-1,1 (B),1 (C), (D),12、下列函數(shù)中,周期是的函數(shù)是 ( )(A)y=sinpx (B)y=cos2x (C)y=s
13、in (D)y=sin4k3、下列函數(shù)是奇函數(shù)的是 ( )(A)y=sin|x| (B)y=xsin|x| (C)y=-|sinx| (D)y=sin(-|x|)4*、函數(shù)y=sin(2x+)+cos(2x+)的最小正周期和最大值分別為 ( )(A)p,1 (B)p,(C)2p,1 (D)2p,三、解答題1、已知函數(shù)y=acosx-2b的最小值為-2,最大值為4,求a和b的值。2、求函數(shù)y=2+5cosx-1的值域。3、判斷下列函數(shù)的奇偶性:(1)y=cos(2x-); (2)y=xsinx+cos3x4、求函數(shù)y=-sinxcosx的單調(diào)區(qū)間。一、填空題1、 奇函數(shù); 2、 6, x|x=2k-,kZ ; 3、p;4、; 5、k-,k+(kZ); 6、2k+,2k+p(kZ)7、k+,k+(kZ); 8、y=2sin6x+1(答案不唯一)二、1、B; 2、D; 3、B; 4、A(y=sin2x+cos
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度木飾面復(fù)合材料研發(fā)與應(yīng)用合同4篇
- 2025年高端餐廳頭灶廚師聘用與管理綜合服務(wù)協(xié)議3篇
- 2025年度產(chǎn)業(yè)園入駐企業(yè)產(chǎn)業(yè)金融服務(wù)合作協(xié)議4篇
- 2025年度瓦屋面施工與屋頂智能控制系統(tǒng)合同
- 2025版安全標(biāo)識(shí)制作安裝及售后服務(wù)合同3篇
- 2025版外資企業(yè)外債借款合同訂立指南3篇
- 2025年中國(guó)果品加工行業(yè)發(fā)展?jié)摿︻A(yù)測(cè)及投資戰(zhàn)略研究報(bào)告
- 2025年中國(guó)斜紋厚薄橡根行業(yè)市場(chǎng)發(fā)展前景及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 2025年度住宅小區(qū)新能源汽車(chē)充電車(chē)位租賃及能源管理協(xié)議4篇
- 2025年磚壞制作項(xiàng)目投資可行性研究分析報(bào)告
- 物業(yè)民法典知識(shí)培訓(xùn)課件
- 2023年初中畢業(yè)生信息技術(shù)中考知識(shí)點(diǎn)詳解
- 2024-2025學(xué)年八年級(jí)數(shù)學(xué)人教版上冊(cè)寒假作業(yè)(綜合復(fù)習(xí)能力提升篇)(含答案)
- 《萬(wàn)方數(shù)據(jù)資源介紹》課件
- 第一章-地震工程學(xué)概論
- 《中國(guó)糖尿病防治指南(2024版)》更新要點(diǎn)解讀
- 浙江省金華市金東區(qū)2022-2024年中考二模英語(yǔ)試題匯編:任務(wù)型閱讀
- 青島版(五四制)四年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)課件
- 大健康行業(yè)研究課件
- 租賃汽車(chē)可行性報(bào)告
- 計(jì)算機(jī)輔助設(shè)計(jì)AutoCAD繪圖-課程教案
評(píng)論
0/150
提交評(píng)論