模式識別試題及總結(jié)_第1頁
模式識別試題及總結(jié)_第2頁
模式識別試題及總結(jié)_第3頁
模式識別試題及總結(jié)_第4頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、精品一、 填空與選擇填空(本題答案寫在此試卷上,30 分)1、模式識別系統(tǒng)的基本構(gòu)成單元包括:模式采集、特征提取與選擇和 模式分類。2 、統(tǒng)計模式識別中描述模式的方法一般使用特真矢量;句法模式識別中模式描述方法一般有串 、 樹、 網(wǎng)。3、聚類分析算法屬于( 1 ) ;判別域代數(shù)界面方程法屬于( 3 )。(1 )無監(jiān)督分類(2) 有監(jiān)督分類( 3 )統(tǒng)計模式識別方法(4 )句法模式識別方法4、若描述模式的特征量為0-1 二值特征量,則一般采用(4 )進(jìn)行相似性度量。( 1 )距離測度( 2)模糊測度( 3)相似測度( 4 )匹配測度5、 下列函數(shù)可以作為聚類分析中的準(zhǔn)則函數(shù)的有(1 )( 3)(

2、 4)。(1)(2)(3)(4)6、 Fisher 線性判別函數(shù)的求解過程是將N 維特征矢量投影在(2 )中進(jìn)行 。(1)二維空間( 2)一維空間(3)N-1維空間7、下列判別域界面方程法中只適用于線性可分情況的算法有( 1 ) ;線性可分、不可分都適用的有(3) 。(1 )感知器算法( 2) H-K算法( 3)積累位勢函數(shù)法8 、下列四元組中滿足文法定義的有( 1 )( 2 )( 4 )。(1)( A, B, 0, 1, A01,A0A 1 ,A 1A0,BBA,B 0,A)(2)( A, 0, 1, A0, A0A, A)(3)( , a,b, S00,11S,S00,S11,S)SS S

3、( 4 )( A, 0, 1, A01,A0 A1,A1A0, A)9 、影響層次聚類算法結(jié)果的主要因素有(計算模式距離的測度、 (聚類準(zhǔn)則、類間距離門限、預(yù)定的類別數(shù)目)。感謝下載載精品10、歐式距離具有(1 、 2);馬式距離具有(1、2、 3、4)。( 1)平移不變性(2 )旋轉(zhuǎn)不變性( 3 )尺度縮放不變性(4 )不受量綱影響的特性11、線性判別函數(shù)的正負(fù)和數(shù)值大小的幾何意義是(正(負(fù))表示樣本點位于判別界面法向量指向的正(負(fù))半空間中;絕對值正比于樣本點到判別界面的距離。)。12、感知器算法 1。(1 )只適用于線性可分的情況;(2 )線性可分、不可分都適用。13、積累勢函數(shù)法較之于

4、H-K 算法的優(yōu)點是( 該方法可用于非線性可分情況(也可用于線性可分情K ( x)k K (x, xk )xk況) );位勢函數(shù) K(x,x k)與積累位勢函數(shù) K(x) 的關(guān)系為(X)。14、在統(tǒng)計模式分類問題中,聶曼- 皮爾遜判決準(zhǔn)則主要用于(某一種判決錯誤較另一種判決錯誤更為重要 )情況;最小最大判決準(zhǔn)則主要用于(先驗概率未知的 )情況。15、“特征個數(shù)越多越有利于分類”這種說法正確嗎?(錯誤 )。特征選擇的主要目的是( 從 n 個特征中選出最有利于分類的的m 個特征( m<n ),以降低特征維數(shù) )。一般在( 可分性判據(jù)對特征個數(shù)具有單調(diào)性)和(n m>>n)的條件下

5、,可以使用分支定界法以減少計算量。C16、 散度 Jij 越大,說明i類模式與j 類模式的分布( 差別越大 );當(dāng) i 類模式與j 類模式的分布相同時, Jij= ( 0 )。17、 已知有限狀態(tài)自動機(jī)Af=(,Q , ,q0 ,F(xiàn)), =0 ,1 ;Q=q0 ,q1 ; : (q0 ,0)= q1, (q0 ,1)= q1 , (q1 , 0)=q0 , (q1 ,1)=q0;q0=q0;F=q0 ?,F(xiàn)有輸入字符串:(a) 00011101011,(b)1100110011 , (c) 101100111000,(d)0010011,試問,用 Af對上述字符串進(jìn)行分類的結(jié)果為(1:a,d;

6、2:b,c)。18 、影響聚類算法結(jié)果的主要因素有()。已知類別的樣本質(zhì)量;分類準(zhǔn)則;特征選?。荒J较嗨菩詼y度。感謝下載載精品19、模式識別中,馬式距離較之于歐式距離的優(yōu)點是()。平移不變性;旋轉(zhuǎn)不變性;尺度不變性;考慮了模式的分布。20、基于二次準(zhǔn)則函數(shù)的H-K 算法較之于感知器算法的優(yōu)點是()。可以判別問題是否線性可分;其解完全適用于非線性可分的情況;其解的適應(yīng)性更好;計算量小。21、影響基本 C 均值算法的主要因素有()。樣本輸入順序;模式相似性測度;聚類準(zhǔn)則;初始類心的選取。22、位勢函數(shù)法的積累勢函數(shù)K(x) 的作用相當(dāng)于Bayes 判決中的()。先驗概率;后驗概率;類概率密度;類概

7、率密度與先驗概率的乘積。23、在統(tǒng)計模式分類問題中,當(dāng)先驗概率未知時,可以使用( )。最小損失準(zhǔn)則;最小最大損失準(zhǔn)則;最小誤判概率準(zhǔn)則;N-P 判決。24、在()情況下,用分支定界法做特征選擇計算量相對較少。 Cn d >>n, ( n 為原特征個數(shù), d 為要選出的特征個數(shù)) ;樣本較多; 選用的可分性判據(jù)J 對特征數(shù)目單調(diào)不減;選用的可分性判據(jù)J 具有可加性。25、散度J是根據(jù)()構(gòu)造的可分性判據(jù)。D先驗概率;后驗概率;類概率密度;信息熵;幾何距離。26、似然函數(shù)的概型已知且為單峰,則可用()估計該似然函數(shù)。矩估計;最大似然估計;Bayes 估計; Bayes 學(xué)習(xí); Parz

8、en 窗法。27、 Kn 近鄰元法較之 Parzen窗法的優(yōu)點是()。所需樣本數(shù)較少;穩(wěn)定性較好;分辨率較高;連續(xù)性較好。28、從分類的角度講,用DKLT 做特征提取主要利用了DKLT 的性質(zhì):()。變換產(chǎn)生的新分量正交或不相關(guān);以部分新的分量表示原矢量均方誤差最?。皇棺儞Q后的矢量能量更趨集中;感謝下載載精品29 、一般,剪輯k-NN最近鄰方法在()的情況下效果較好。樣本數(shù)較大;樣本數(shù)較??;樣本呈團(tuán)狀分布;樣本呈鏈狀分布。30 、如果以特征向量的相關(guān)系數(shù)作為模式相似性測度,則影響聚類算法結(jié)果的主要因素有()。已知類別樣本質(zhì)量;分類準(zhǔn)則;特征選取;量綱。二、 (15 分 )簡答及證明題( 1)影

9、響聚類結(jié)果的主要因素有那些?( 2 )證明馬氏距離是平移不變的、非奇異線性變換不變的。答:( 1 )分類準(zhǔn)則,模式相似性測度,特征量的選擇,量綱。( 2 )證明:(2 分)(2 分)(1分 )設(shè),有非奇異線性變換:(1分 )感謝下載載精品(4 分)三、 (8 分 )說明線性判別函數(shù)的正負(fù)和數(shù)值大小在分類中的意義并證明之。答: (1 )( 4 分)的絕對值正比于到超平面的距離平面的方程可以寫成式中。于是是平面的單位法矢量,上式可寫成設(shè)是平面中的任一點,是特征空間中任一點, 點到平面的距離為差矢量在上的投影的絕對值,即感謝下載載精品(1-1)上式中利用了在平面中,故滿足方程式 (1-1) 的分子為

10、判別函數(shù)絕對值,上式表明,的值正比于到超平面的距離,一個特征矢量代入判別函數(shù)后所得值的絕對值越大表明該特征點距判別界面越遠(yuǎn)。( 2 )( 4 分)的正(負(fù))反映在超平面的正(負(fù))側(cè)兩矢量和的數(shù)積為(2 分)顯然,當(dāng)和夾角小于時,即在指向的那個半空間中,>0 ;反之,當(dāng)和夾角大于時,即在背向的那個半空間中,<0 。由于,故和同號。所以,當(dāng)在指向的半空間中時,;當(dāng)在背向的半空間中,。判別函數(shù)值的正負(fù)表示出特征點位于哪個半空間中,或者換句話說,表示特征點位于界面的哪一側(cè)。五、 (12 分,每問 4 分 ) 在目標(biāo)識別中,假定有農(nóng)田和裝甲車兩種類型,類型1 和類型2 分別代表農(nóng)田和裝甲車,

11、它們的先驗概率分別為0.8 和 0.2 ,損失函數(shù)如表1 所示?,F(xiàn)在做了三次試驗,獲得三個樣本的類概率密度如下: 0.3 , 0.1 , 0.6: 0.7 , 0.8 , 0.3( 1 ) 試用貝葉斯最小誤判概率準(zhǔn)則判決三個樣本各屬于哪一個類型;( 2 ) 假定只考慮前兩種判決,試用貝葉斯最小風(fēng)險準(zhǔn)則判決三個樣本各屬于哪一類;( 3 ) 把拒絕判決考慮在內(nèi),重新考核三次試驗的結(jié)果。表 1感謝下載載精品類型損失1判決1145111解:由題可知:,( 1 )( 4 分) 根據(jù)貝葉斯最小誤判概率準(zhǔn)則知:,則可以任判;,則判為;,則判為;( 2 )( 4 分) 由題可知:則,判為;,判為;,判為;(

12、3 )( 4 分)對于兩類問題,對于樣本,假設(shè)已知,有感謝下載載精品則對于第一個樣本,則拒判;,則拒判;,拒判。1. 監(jiān)督學(xué)習(xí)與非監(jiān)督學(xué)習(xí)的區(qū)別:監(jiān)督學(xué)習(xí)方法用來對數(shù)據(jù)實現(xiàn)分類,分類規(guī)則通過訓(xùn)練獲得。該訓(xùn)練集由帶分類號的數(shù)據(jù)集組成,因此監(jiān)督學(xué)習(xí)方法的訓(xùn)練過程是離線的。非監(jiān)督學(xué)習(xí)方法不需要單獨的離線訓(xùn)練過程,也沒有帶分類號(標(biāo)號)的訓(xùn)練數(shù)據(jù)集,一般用來對數(shù)據(jù)集進(jìn)行分析,如聚類,確定其分布的主分量等。(實例:道路圖)就道路圖像的分割而言,監(jiān)督學(xué)習(xí)方法則先在訓(xùn)練用圖像中獲取道路象素與非道路象素集,進(jìn)行分類器設(shè)計,然后用所設(shè)計的分類器對道路圖像進(jìn)行分割。使用非監(jiān)督學(xué)習(xí)方法, 則依據(jù)道路路面象素與非道路

13、象素之間的聚類分析進(jìn)行聚類運算,以實現(xiàn)道路圖像的分割。2. 動態(tài)聚類是指對當(dāng)前聚類通過迭代運算改善聚類;分級聚類則是將樣本個體,按相似度標(biāo)準(zhǔn)合并,隨著相似度要求的降低實現(xiàn)合并。3. 線性分類器三種最優(yōu)準(zhǔn)則:Fisher準(zhǔn)則:根據(jù)兩類樣本一般類內(nèi)密集, 類間分離的特點,尋找線性分類器最佳的法線向量方向,使兩類樣本在該方向上的投影滿足類內(nèi)盡可能密集,類間盡可能分開。該種度量通過類內(nèi)離散矩陣Sw 和類間離散矩陣Sb 實現(xiàn)。感知準(zhǔn)則函數(shù) :準(zhǔn)則函數(shù)以使錯分類樣本到分界面距離之和最小為原則。其優(yōu)點是通過錯分類樣本提供的信息對分類器函數(shù)進(jìn)行修正,這種準(zhǔn)則是人工神經(jīng)元網(wǎng)絡(luò)多層感知器的基礎(chǔ)。支持向量機(jī) :基本

14、思想是在兩類線性可分條件下,所設(shè)計的分類器界面使兩類之間的間隔為最大, 它的基本出發(fā)點是使期望泛化風(fēng)險盡可能小。一、試問 “模式 ”與“模式類 ”的含義。如果一位姓王的先生是位老年人,試問“王先生 ”和 “老頭 ”誰是模式,誰是模式類?答:在模式識別學(xué)科中,就“模式 ”與 “模式類 ”而言,模式類是一類事物的代表,概念或典型,而“模式 ”則是某一事物的具體體現(xiàn),如“老頭 ”是模式類,而王先生則是“模式 ”,是 “老頭 ”的具體化。感謝下載載精品二、試說明 Mahalanobis距離平方的定義,到某點的Mahalanobis距離平方為常數(shù)的軌跡的幾何意義,它與歐氏距離的區(qū)別與聯(lián)系。答: Maha

15、lanobis距離的平方定義為:其中 x, u 為兩個數(shù)據(jù),是一個正定對稱矩陣(一般為協(xié)方差矩陣)。根據(jù)定義,距某一點的Mahalanobis距離相等點的軌跡是超橢球,如果是單位矩陣,則 Mahalanobis距離就是通常的歐氏距離。三、試說明用監(jiān)督學(xué)習(xí)與非監(jiān)督學(xué)習(xí)兩種方法對道路圖像中道路區(qū)域的劃分的基本做法,以說明這兩種學(xué)習(xí)方法的定義與它們間的區(qū)別。答:監(jiān)督學(xué)習(xí)方法用來對數(shù)據(jù)實現(xiàn)分類,分類規(guī)則通過訓(xùn)練獲得。該訓(xùn)練集由帶分類號的數(shù)據(jù)集組成,因此監(jiān)督學(xué)習(xí)方法的訓(xùn)練過程是離線的。非監(jiān)督學(xué)習(xí)方法不需要單獨的離線訓(xùn)練過程,也沒有帶分類號(標(biāo)號)的訓(xùn)練數(shù)據(jù)集,一般用來對數(shù)據(jù)集進(jìn)行分析,如聚類,確定其分布

16、的主分量等。就道路圖像的分割而言,監(jiān)督學(xué)習(xí)方法則先在訓(xùn)練用圖像中獲取道路象素與非道路象素集,進(jìn)行分類器設(shè)計,然后用所設(shè)計的分類器對道路圖像進(jìn)行分割。使用非監(jiān)督學(xué)習(xí)方法,則依據(jù)道路路面象素與非道路象素之間的聚類分析進(jìn)行聚類運算,以實現(xiàn)道路圖像的分割。四、試述動態(tài)聚類與分級聚類這兩種方法的原理與不同。答:動態(tài)聚類是指對當(dāng)前聚類通過迭代運算改善聚類;分級聚類則是將樣本個體,按相似度標(biāo)準(zhǔn)合并,隨著相似度要求的降低實現(xiàn)合并。五、如果觀察一個時序信號時在離散時刻序列得到的觀察量序列表示為,而該時序信號的內(nèi)在狀態(tài)序列表示成。如果計算在給定O 條件下出現(xiàn)S 的概率,試問此概率是何種概率。如果從觀察序列來估計狀

17、態(tài)序列的最大似然估計,這與Bayes 決策中基于最小錯誤率的決策有什么關(guān)系。答:在給定觀察序列條件下分析它由某個狀態(tài)序列S 產(chǎn)生的概率似后驗概率,寫成P(S|O) ,而通過 O 求對狀態(tài)序列的最大似然估計,與貝葉斯決策的最小錯誤率決策相當(dāng)。感謝下載載精品六、 已知一組數(shù)據(jù)的協(xié)方差矩陣為,試問1 協(xié)方差矩陣中各元素的含義。2 求該數(shù)組的兩個主分量。3 主分量分析或稱 K-L 變換,它的最佳準(zhǔn)則是什么?4 為什么說經(jīng)主分量分析后,消除了各分量之間的相關(guān)性。答:協(xié)方差矩陣為,則1 ) 對角元素是各分量的方差,非對角元素是各分量之間的協(xié)方差。2 ) 主分量,通過求協(xié)方差矩陣的特征值,用得,則,相應(yīng)的特

18、征向量為:,對應(yīng)特征向量為,對應(yīng)。這兩個特征向量即為主分量。3 ) K-L 變換的最佳準(zhǔn)則為:對一組數(shù)據(jù)進(jìn)行按一組正交基分解,在只取相同數(shù)量分量的條件下,以均方誤差計算截尾誤差最小。4 ) 在經(jīng)主分量分解后,協(xié)方差矩陣成為對角矩陣,因而各主分量間相關(guān)消除。七、試說明以下問題求解是基于監(jiān)督學(xué)習(xí)或是非監(jiān)督學(xué)習(xí):1. 求數(shù)據(jù)集的主分量2. 漢字識別3. 自組織特征映射4. CT 圖像的分割答:1、求數(shù)據(jù)集的主分量是非監(jiān)督學(xué)習(xí)方法;2 、漢字識別對待識別字符加上相應(yīng)類別號 有監(jiān)督學(xué)習(xí)方法;3 、自組織特征映射 將高維數(shù)組按保留近似度向低維映射 非監(jiān)督學(xué)習(xí);4 、 CT 圖像分割 按數(shù)據(jù)自然分布聚類 非

19、監(jiān)督學(xué)習(xí)方法;八、試列舉線性分類器中最著名的三種最佳準(zhǔn)則以及它們各自的原理。感謝下載載精品答:線性分類器三種最優(yōu)準(zhǔn)則:Fisher準(zhǔn)則:根據(jù)兩類樣本一般類內(nèi)密集, 類間分離的特點,尋找線性分類器最佳的法線向量方向,使兩類樣本在該方向上的投影滿足類內(nèi)盡可能密集,類間盡可能分開。該種度量通過類內(nèi)離散矩陣Sw 和類間離散矩陣Sb 實現(xiàn)。感知準(zhǔn)則函數(shù) :準(zhǔn)則函數(shù)以使錯分類樣本到分界面距離之和最小為原則。其優(yōu)點是通過錯分類樣本提供的信息對分類器函數(shù)進(jìn)行修正,這種準(zhǔn)則是人工神經(jīng)元網(wǎng)絡(luò)多層感知器的基礎(chǔ)。支持向量機(jī) :基本思想是在兩類線性可分條件下,所設(shè)計的分類器界面使兩類之間的間隔為最大, 它的基本出發(fā)點是

20、使期望泛化風(fēng)險盡可能小。九、在一兩維特征空間,兩類決策域由兩條直線H1 和 H2 分界,其中而包含 H1 與 H2 的銳角部分為第一類,其余為第二類。試求:1用一雙層感知器構(gòu)造該分類器2用凹函數(shù)的并構(gòu)造該分類器答:按題意要求1) H1 與 H2 將空間劃分成四個部分, 按使 H1 與 H2 大于零與小于零表示成四個區(qū)域,而第一類屬于 ()區(qū)域,為方便起見, 令則第一類在 ( )區(qū)域。用雙層感知器, 神經(jīng)元用域值,則在第一類樣本輸入時,兩隱層結(jié)點的輸出均為1 ,其余則分別為( ), ( ),( ), 故可按圖設(shè)置域值。感謝下載載精品2) 用凹函數(shù)的并表示:或表示成,如,則,否則十、設(shè)有兩類正態(tài)分

21、布的樣本基于最小錯誤率的貝葉斯決策分界面,分別為X2 =0 ,以及 X1 =3 ,其中兩類的協(xié)方差矩陣,先驗概率相等,并且有,。試求:以及。答:設(shè)待求,待求由于,先驗概率相等。則基于最小錯誤率的Bayes 決策規(guī)則,在兩類決策面分界面上的樣本X 應(yīng)滿足(1 )其中按題意,(注:為方便起見,在下面計算中先去掉系數(shù)4/3 )。按題意分界面由x1=3 及 x2=0兩條直線構(gòu)成,則分界面方程為感謝下載載精品(2)對( 1)式進(jìn)行分解有得( 3)由( 3)式第一項得( 4 )將( 4)式與( 2 )式對比可知a=1,c=1又由 c=1 與,得 b2=1/4,b 有兩種可能,即b=1/2或 b=-1/2,

22、如果 b=1/2,則表明,此時分界面方程應(yīng)為線性,與題意不符,只有b=-1/2則( 4)式為: 2X1 X2(5)將相應(yīng)結(jié)果帶入(3)式第二項有(6 )則結(jié)合( 5)( 2)應(yīng)有,則(7 )感謝下載載精品解得,由得九、證明在 正定或半正定時, Mahalanobis距離 r 符合距離定義的三個條件,即(1 )r(a,b)=r(b,a)(2 )當(dāng)且僅當(dāng) a=b 時,有 r(a,b)=0(3 )r(a,c) r(a,b)+r(b,c)證明:(1) 根據(jù)定義(2) 由于 為對稱陣,故 可以分解為,其中,且所有特征值大于等于零??梢哉J(rèn)為這就變?yōu)榱藗鹘y(tǒng)意義上的歐氏距離,可以由歐氏距離滿足的性質(zhì)直接證明本

23、命題。十、對一副道路圖像,希望把道路部分劃分出來,可以采用以下兩種方法:1 在該圖像中分別在道路部分與非道路部分畫出一個窗口,把在這兩個窗口中的象感謝下載載精品素數(shù)據(jù)作為訓(xùn)練集,用 Fisher 準(zhǔn)則方法求得分類器參數(shù), 再用該分類器對整幅圖進(jìn)行分類。2 將整幅圖的每個象素的屬性記錄在一張數(shù)據(jù)表中,然后用某種方法將這些數(shù)據(jù)按它們的自然分布狀況劃分成兩類。因此每個象素就分別得到相應(yīng)的類別號,從而實現(xiàn)了道路圖像的分割。試問以上兩種方法哪一種是監(jiān)督學(xué)習(xí),哪個是非監(jiān)督學(xué)習(xí)?答:第一種方法中標(biāo)記了兩類樣本的標(biāo)號, 需要人手工干預(yù)訓(xùn)練過程, 屬于監(jiān)督學(xué)習(xí)方法;第二種方法只是依照數(shù)據(jù)的自然分布,把它們劃分成

24、兩類,屬于非監(jiān)督學(xué)習(xí)方法。十一、已知有兩類數(shù)據(jù) ,分別為試求:該組數(shù)據(jù)的類內(nèi)及類間離散矩陣及。答:第一類的均值向量為十二、設(shè)一個二維空間中的兩類樣本服從正態(tài)分布,其參數(shù)分別為:感謝下載載精品,先驗概率,試證明:其基于最小錯誤率的貝葉斯決策分界面方程為一圓,并求其方程。證明:先驗概率相等條件下,基于最小錯誤率貝葉斯決策的分界面上兩類條件概率密度函數(shù)相等。因此有:化簡為,是一個圓的方程。十三、試分析五種常用決策規(guī)則思想方法的異同。答、五種常用決策是:1. 基于最小錯誤率的貝葉斯決策, 利用概率論中的貝葉斯公式, 得出使得錯誤率最小的分類規(guī)則。2. 基于最小風(fēng)險的貝葉斯決策, 引入了損失函數(shù),得出使

25、決策風(fēng)險最小的分類。 當(dāng)在0 1 損失函數(shù)條件下,基于最小風(fēng)險的貝葉斯決策變成基于最小錯誤率的貝葉斯決策。3. 在限定一類錯誤率條件下使另一類錯誤率最小的兩類別決策。4. 最大最小決策: 類先驗概率未知,考察先驗概率變化對錯誤率的影響, 找出使最小感謝下載載精品貝葉斯奉獻(xiàn)最大的先驗概率,以這種最壞情況設(shè)計分類器。5. 序貫分類方法, 除了考慮分類造成的損失外,還考慮特征獲取造成的代價,先用一部分特征分類,然后逐步加入性特征以減少分類損失,同時平衡總的損失,以求得最有效益。十四、假設(shè)在某個地區(qū)細(xì)胞識別中正常 ( w 1)和異常( w 2)兩類先驗概率分別為P(w 1)=0.9 ,P(w 2 )=

26、0.1 ,現(xiàn)有一待識別的細(xì)胞, 其觀察值為 x,從類條件概率密度分布曲線上查得 P(x w1 ) 0.2 , P( x w2 ) 0.4 ,并且已知 11 0 , 12 6 , 21 1, 22 0試對該細(xì)胞 x 用一下兩種方法進(jìn)行分類:1. 基于最小錯誤率的貝葉斯決策;2. 基于最小風(fēng)險的貝葉斯決策;請分析兩種結(jié)果的異同及原因。答: 1.2.感謝下載載精品十五、既然有線性判別函數(shù), 為什么還要引進(jìn)非線性判別函數(shù)?試分析由“線性判別函數(shù)”向“非線性判別函數(shù)”推廣的思想和方法。答:實際中有很多模式識別問題并不是線性可分的,這時就需要采用非線性分類器,比如當(dāng)兩類樣本分不具有多峰性質(zhì)并互相交錯時,簡

27、單的線性判別函數(shù)往往會帶來較大的分類錯誤。這時,樹分類器作為一種分段線性分類器,常常能有效地應(yīng)用于這種情況。十六、 1. 什么是特征選擇?感謝下載載精品2. 什么是 Fisher 線性判別?答:1. 特征選擇就是從一組特征中挑選出一些最有效的特征以達(dá)到降低特征空間維數(shù)的目的。2. Fisher 線性判別:可以考慮把 d 維空間的樣本投影到一條直線上,形成一維空間,即把維數(shù)壓縮到一維,這在數(shù)學(xué)上容易辦到,然而,即使樣本在d 維空間里形成若干緊湊的互相分得開的集群,如果把它們投影到一條任意的直線上,也可能使得幾類樣本混在一起而變得無法識別。 但是在一般情況下, 總可以找到某個方向, 使得在這個方向

28、的直線上,樣本的投影能分開得最好。問題是如何根據(jù)實際情況找到這條最好的、最易于分類的投影線,這就是 Fisher 算法所要解決的基本問題。十七、寫出兩類和多類情況下最小風(fēng)險貝葉斯決策判別函數(shù)和決策面方程。十八、請論述模式識別系統(tǒng)的主要組成部分及其設(shè)計流程,并簡述各組成部分中常用方法的主要思想。特征空間信號空間數(shù)據(jù)獲取預(yù)處理特征提取與選擇感謝下載載精品信息獲?。和ㄟ^測量、采樣和量化,可以用矩陣或向量表示二維圖像或以為波形。預(yù)處理:去除噪聲,加強(qiáng)有用的信息,并對輸入測量儀器或其他因素造成的退化現(xiàn)象進(jìn)行復(fù)原。特征選擇和提?。簽榱擞行У貙崿F(xiàn)分類識別,就要對原始數(shù)據(jù)進(jìn)行變換,得到最能反映分類本質(zhì)的特征。

29、分類決策:在特征空間中用統(tǒng)計方法把識別對象歸為某一類。十九、有兩類樣本集x11 0,0,0 T , x121,0,0 T , x131,0,1 T , x141,1,0Tx21 0,0,1T , x22 0,1,0 T , x23 0,1,1T , x241,1,1T1. 用 K-L 變換求其二維特征空間,并求出其特征空間的坐標(biāo)軸;2. 使用 Fisher 線性判別方法給出這兩類樣本的分類面。感謝下載載精品二十、定性說明基于參數(shù)方法和非參數(shù)方法的概率密度估計有什么區(qū)別?答: 基于參數(shù)方法:是由已知類別的樣本集對總體分布的某些參數(shù)進(jìn)行統(tǒng)計推斷非參數(shù)方法:已知樣本所屬類別,但未知總體概率密度函數(shù)形式感謝下載載精品二十一、答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論