




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、導(dǎo)數(shù)、定積分1導(dǎo)數(shù)的概念函數(shù)y=f(x),如果自變量x在x處有增量,那么函數(shù)y相應(yīng)地有增量=f(x+)f(x),比值叫做函數(shù)y=f(x)在x到x+之間的平均變化率,即=。 如果當(dāng)時(shí),有極限,我們就說(shuō)函數(shù)y=f(x)在點(diǎn)x處可導(dǎo),并把這個(gè)極限叫做f(x)在點(diǎn)x處的導(dǎo)數(shù),記作f(x)或y|。即f(x)=。說(shuō)明:(1)函數(shù)f(x)在點(diǎn)x處可導(dǎo),是指時(shí),有極限。如果不存在極限,就說(shuō)函數(shù)在點(diǎn)x處不可導(dǎo),或說(shuō)無(wú)導(dǎo)數(shù)(2)是自變量x在x處的改變量,時(shí),而是函數(shù)值的改變量,可以是零。 由導(dǎo)數(shù)的定義可知,求函數(shù)y=f(x)在點(diǎn)x處的導(dǎo)數(shù)的步驟(可由學(xué)生來(lái)歸納):(1)求函數(shù)的增量=f(x+)f(x);(2)求平
2、均變化率=;(3)取極限,得導(dǎo)數(shù)f(x)=。2導(dǎo)數(shù)的幾何意義 函數(shù)y=f(x)在點(diǎn)x處的導(dǎo)數(shù)的幾何意義是曲線(xiàn)y=f(x)在點(diǎn)p(x,f(x)處的切線(xiàn)的斜率。也就是說(shuō),曲線(xiàn)y=f(x)在點(diǎn)p(x,f(x)處的切線(xiàn)的斜率是f(x)。相應(yīng)地,切線(xiàn)方程為yy=f/(x)(xx)。3常見(jiàn)函數(shù)的導(dǎo)出公式()(C為常數(shù))()()()4兩個(gè)函數(shù)的和、差、積的求導(dǎo)法則法則1:兩個(gè)函數(shù)的和(或差)的導(dǎo)數(shù),等于這兩個(gè)函數(shù)的導(dǎo)數(shù)的和(或差),即: (法則2:兩個(gè)函數(shù)的積的導(dǎo)數(shù),等于第一個(gè)函數(shù)的導(dǎo)數(shù)乘以第二個(gè)函數(shù),加上第一個(gè)函數(shù)乘以第二個(gè)函數(shù)的導(dǎo)數(shù),即:若C為常數(shù),則.即常數(shù)與函數(shù)的積的導(dǎo)數(shù)等于常數(shù)乘以函數(shù)的導(dǎo)數(shù): 法
3、則3兩個(gè)函數(shù)的商的導(dǎo)數(shù),等于分子的導(dǎo)數(shù)與分母的積,減去分母的導(dǎo)數(shù)與分子的積,再除以分母的平方:=(v0)。形如y=f的函數(shù)稱(chēng)為復(fù)合函數(shù)。復(fù)合函數(shù)求導(dǎo)步驟:分解求導(dǎo)回代。法則:y|= y| ·u|5導(dǎo)數(shù)的應(yīng)用(1)一般地,設(shè)函數(shù)在某個(gè)區(qū)間可導(dǎo),如果,則為增函數(shù);如果,則為減函數(shù);如果在某區(qū)間內(nèi)恒有,則為常數(shù);(2)曲線(xiàn)在極值點(diǎn)處切線(xiàn)的斜率為0,極值點(diǎn)處的導(dǎo)數(shù)為0;曲線(xiàn)在極大值點(diǎn)左側(cè)切線(xiàn)的斜率為正,右側(cè)為負(fù);曲線(xiàn)在極小值點(diǎn)左側(cè)切線(xiàn)的斜率為負(fù),右側(cè)為正;(3)一般地,在區(qū)間a,b上連續(xù)的函數(shù)f在a,b上必有最大值與最小值。求函數(shù)在(a,b)內(nèi)的極值; 求函數(shù)在區(qū)間端點(diǎn)的值(a)、(b);
4、將函數(shù) 的各極值與(a)、(b)比較,其中最大的是最大值,其中最小的是最小值6定積分(1)概念設(shè)函數(shù)f(x)在區(qū)間a,b上連續(xù),用分點(diǎn)ax0<x1<<xi1<xi<xnb把區(qū)間a,b等分成n個(gè)小區(qū)間,在每個(gè)小區(qū)間xi1,xi上取任一點(diǎn)i(i1,2,n)作和式In(i)x(其中x為小區(qū)間長(zhǎng)度),把n即x0時(shí),和式In的極限叫做函數(shù)f(x)在區(qū)間a,b上的定積分,記作:,即(i)x。這里,a與b分別叫做積分下限與積分上限,區(qū)間a,b叫做積分區(qū)間,函數(shù)f(x)叫做被積函數(shù),x叫做積分變量,f(x)dx叫做被積式基本的積分公式:C;C(mQ, m1);dxlnC;C;C;
5、sinxC;cosxC(表中C均為常數(shù))(2)定積分的性質(zhì)(k為常數(shù));(其中acb。(3)定積分求曲邊梯形面積由三條直線(xiàn)xa,xb(a<b),x軸及一條曲線(xiàn)yf(x)(f(x)0)圍成的曲邊梯的面積。如果圖形由曲線(xiàn)y1f1(x),y2f2(x)(不妨設(shè)f1(x)f2(x)0),及直線(xiàn)xa,xb(a<b)圍成,那么所求圖形的面積SS曲邊梯形AMNBS曲邊梯形DMNC。典例解析題型1:導(dǎo)數(shù)的概念例1已知s=,(1)計(jì)算t從3秒到3.1秒 、3.001秒 、 3.0001秒.各段內(nèi)平均速度;(2)求t=3秒是瞬時(shí)速度解析:(1)指時(shí)間改變量;指時(shí)間改變量。其余各段時(shí)間內(nèi)的平均速度,事先
6、刻在光盤(pán)上,待學(xué)生回答完第一時(shí)間內(nèi)的平均速度后,即用多媒體出示,讓學(xué)生思考在各段時(shí)間內(nèi)的平均速度的變化情況。(2)從(1)可見(jiàn)某段時(shí)間內(nèi)的平均速度隨變化而變化,越小,越接近于一個(gè)定值,由極限定義可知,這個(gè)值就是時(shí),的極限,V=(6+=3g=29.4(米/秒)。例2求函數(shù)y=的導(dǎo)數(shù)。解析:,=-。點(diǎn)評(píng):掌握切的斜率、 瞬時(shí)速度,它門(mén)都是一種特殊的極限,為學(xué)習(xí)導(dǎo)數(shù)的定義奠定基礎(chǔ)。題型2:導(dǎo)數(shù)的基本運(yùn)算例3(1)求的導(dǎo)數(shù);(2)求的導(dǎo)數(shù);(3)求的導(dǎo)數(shù);(4)求y=的導(dǎo)數(shù);(5)求y的導(dǎo)數(shù)解析:(1),(2)先化簡(jiǎn),(3)先使用三角公式進(jìn)行化簡(jiǎn).(4)y=;(5)yxy*(x)x)*()。點(diǎn)評(píng):(1
7、)求導(dǎo)之前,應(yīng)利用代數(shù)、三角恒等式等變形對(duì)函數(shù)進(jìn)行化簡(jiǎn),然后求導(dǎo),這樣可以減少運(yùn)算量,提高運(yùn)算速度,減少差錯(cuò);(2)有的函數(shù)雖然表面形式為函數(shù)的商的形式,但在求導(dǎo)前利用代數(shù)或三角恒等變形將函數(shù)先化簡(jiǎn),然后進(jìn)行求導(dǎo)有時(shí)可以避免使用商的求導(dǎo)法則,減少運(yùn)算量例4寫(xiě)出由下列函數(shù)復(fù)合而成的函數(shù): (1)y=cosu,u=1+ (2)y=lnu, u=lnx解析:(1)y=cos(1+);(2)y=ln(lnx)。點(diǎn)評(píng):通過(guò)對(duì)y=(3x-2展開(kāi)求導(dǎo)及按復(fù)合關(guān)系求導(dǎo),直觀的得到=.給出復(fù)合函數(shù)的求導(dǎo)法則,并指導(dǎo)學(xué)生閱讀法則的證明。題型3:導(dǎo)數(shù)的幾何意義例5(1)(2009年廣東卷文)函數(shù)的單調(diào)遞增區(qū)間是(
8、)A. B.(0,3) C.(1,4) D. 答案 D解析 ,令,解得,故選D(2)(2009安徽卷理)已知函數(shù)在R上滿(mǎn)足,則曲線(xiàn)在點(diǎn)處的切線(xiàn)方程是 ( )A. B. C. D. 答案 A解析 由得幾何,即,切線(xiàn)方程,即選A點(diǎn)評(píng):導(dǎo)數(shù)值對(duì)應(yīng)函數(shù)在該點(diǎn)處的切線(xiàn)斜率。例6(2009湖南卷文)若函數(shù)的導(dǎo)函數(shù)在區(qū)間上是增函數(shù),則函數(shù)在區(qū)間上的圖象可能是( )yababaoxoxybaoxyoxybA B C D解析 因?yàn)楹瘮?shù)的導(dǎo)函數(shù)在區(qū)間上是增函數(shù),即在區(qū)間上各點(diǎn)處的斜率是遞增的,由圖易知選A. 注意C中為常數(shù)噢.(2)曲線(xiàn)和在它們交點(diǎn)處的兩條切線(xiàn)與軸所圍成的三角形面積是 。解析:(2)曲線(xiàn)和在它們的
9、交點(diǎn)坐標(biāo)是(1,1),兩條切線(xiàn)方程分別是y=x+2和y=2x1,它們與軸所圍成的三角形的面積是。點(diǎn)評(píng):導(dǎo)數(shù)的運(yùn)算可以和幾何圖形的切線(xiàn)、面積聯(lián)系在一起,對(duì)于較復(fù)雜問(wèn)題有很好的效果。題型4:借助導(dǎo)數(shù)處理單調(diào)性、極值和最值例7(1)對(duì)于R上可導(dǎo)的任意函數(shù)f(x),若滿(mǎn)足(x1)³0,則必有( )Af(0)f(2)<2f(1) B. f(0)f(2)£2f(1)Cf(0)f(2)³2f(1) D. f(0)f(2)>2f(1)(2)函數(shù)的定義域?yàn)殚_(kāi)區(qū)間,導(dǎo)函數(shù)在內(nèi)的圖象如圖所示,則函數(shù)在開(kāi)區(qū)間內(nèi)有極小值點(diǎn)( )A1個(gè) B2個(gè) C3個(gè) D 4個(gè)(3)2009山東
10、卷文)(本小題滿(mǎn)分12分)已知函數(shù),其中 (1)當(dāng)滿(mǎn)足什么條件時(shí),取得極值?(2)已知,且在區(qū)間上單調(diào)遞增,試用表示出的取值范圍.解: (1)由已知得,令,得,要取得極值,方程必須有解,所以,即, 此時(shí)方程的根為,所以 當(dāng)時(shí),x(-,x1)x 1(x1,x2)x2(x2,+)f(x)00f (x)增函數(shù)極大值減函數(shù)極小值增函數(shù)所以在x 1, x2處分別取得極大值和極小值.當(dāng)時(shí), x(-,x2)x 2(x2,x1)x1(x1,+)f(x)00f (x)減函數(shù)極小值增函數(shù)極大值減函數(shù)所以在x 1, x2處分別取得極大值和極小值.綜上,當(dāng)滿(mǎn)足時(shí), 取得極值. (2)要使在區(qū)間上單調(diào)遞增,需使在上恒成
11、立.即恒成立, 所以設(shè),令得或(舍去), 當(dāng)時(shí),當(dāng)時(shí),單調(diào)增函數(shù);當(dāng)時(shí),單調(diào)減函數(shù),所以當(dāng)時(shí),取得最大,最大值為.所以當(dāng)時(shí),此時(shí)在區(qū)間恒成立,所以在區(qū)間上單調(diào)遞增,當(dāng)時(shí)最大,最大值為,所以綜上,當(dāng)時(shí), ; 當(dāng)時(shí), 【命題立意】:本題為三次函數(shù),利用求導(dǎo)的方法研究函數(shù)的極值、單調(diào)性和函數(shù)的最值,函數(shù)在區(qū)間上為單調(diào)函數(shù),則導(dǎo)函數(shù)在該區(qū)間上的符號(hào)確定,從而轉(zhuǎn)為不等式恒成立,再轉(zhuǎn)為函數(shù)研究最值.運(yùn)用函數(shù)與方程的思想,化歸思想和分類(lèi)討論的思想解答問(wèn)題.例8(1)若曲線(xiàn)存在垂直于軸的切線(xiàn),則實(shí)數(shù)的取值范圍是 .解析 解析 由題意該函數(shù)的定義域,由。因?yàn)榇嬖诖怪庇谳S的切線(xiàn),故此時(shí)斜率為,問(wèn)題轉(zhuǎn)化為范圍內(nèi)導(dǎo)函數(shù)存在零點(diǎn)解法1 (圖像法)再將之轉(zhuǎn)化為與存在交點(diǎn)。當(dāng)不符合題意,當(dāng)時(shí),如圖1,數(shù)形結(jié)合可得顯然
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆中國(guó)燃?xì)庑@招聘正式啟動(dòng)筆試參考題庫(kù)附帶答案詳解
- 保證函和保證合同范本
- 加工產(chǎn)品企業(yè)合同范本
- 養(yǎng)殖買(mǎi)賣(mài)合同范例
- 農(nóng)村購(gòu)墓地合同范本
- 介紹股合同范本
- 勞動(dòng)聘用合同范本
- 親兄弟合伙合同范本
- pe管材購(gòu)銷(xiāo)合同范本
- 虧損分擔(dān)合同范例
- 2025人教版一年級(jí)下冊(cè)數(shù)學(xué)教學(xué)進(jìn)度表
- DeepSeek教案寫(xiě)作指令
- 休學(xué)復(fù)學(xué)申請(qǐng)書(shū)
- 瓷磚鋪貼勞務(wù)承包協(xié)議書(shū)
- 2025年四川司法警官職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試近5年??及鎱⒖碱}庫(kù)含答案解析
- 新建污水處理廠工程EPC總承包投標(biāo)方案(技術(shù)標(biāo))
- 山東省德州市2024-2025學(xué)年高三上學(xué)期1月期末生物試題(有答案)
- 《宏觀經(jīng)濟(jì)管理研究》課件
- 本人報(bào)廢車(chē)輛委托書(shū)
- 雙減政策與五項(xiàng)管理解讀
- 2025年道德與法治小學(xué)六年級(jí)下冊(cè)教學(xué)計(jì)劃(含進(jìn)度表)
評(píng)論
0/150
提交評(píng)論