




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、一元二次方程根與系數(shù)的關(guān)系應(yīng)用例析及訓(xùn)練對(duì)于一元二次方程,當(dāng)判別式時(shí),其求根公式為:;若兩根為,當(dāng)0時(shí),則兩根的關(guān)系為:;,根與系數(shù)的這種關(guān)系又稱為韋達(dá)定理;它的逆定理也是成立的,即當(dāng),時(shí),那么則是的兩根。一元二次方程的根與系數(shù)的關(guān)系,綜合性強(qiáng),應(yīng)用極為廣泛,在中學(xué)數(shù)學(xué)中占有極重要的地位,也是數(shù)學(xué)學(xué)習(xí)中的重點(diǎn)。學(xué)習(xí)中,老師除了要求同學(xué)們應(yīng)用韋達(dá)定理解答一些變式題目外,還常常要求同學(xué)們熟記一元二次方程根的判別式存在的三種情況,以及應(yīng)用求根公式求出方程的兩個(gè)根,進(jìn)而分解因式,即。下面就對(duì)應(yīng)用韋達(dá)定理可能出現(xiàn)的問(wèn)題舉例做些分析,希望能給同學(xué)們帶來(lái)小小的幫助。 一、根據(jù)判別式,討論一元二次方
2、程的根。 例1:已知關(guān)于的方程(1)有兩個(gè)不相等的實(shí)數(shù)根,且關(guān)于的方程(2)沒(méi)有實(shí)數(shù)根,問(wèn)取什么整數(shù)時(shí),方程(1)有整數(shù)解? 分析:在同時(shí)滿足方程(1),(2)條件的的取值范圍中篩選符合條件的的整數(shù)值。 解:方程(1)有兩個(gè)不相等的實(shí)數(shù)根, 解得;
3、60; 方程(2)沒(méi)有實(shí)數(shù)根, 解得; 于是,同時(shí)滿足方程(1),(2)條件的的取值范圍是 其中,的整數(shù)值有或 當(dāng)時(shí),
4、方程(1)為,無(wú)整數(shù)根; 當(dāng)時(shí),方程(1)為,有整數(shù)根。 解得: 所以,使方程(1)有整數(shù)根的的整數(shù)值是。 說(shuō)明:熟悉一元二次方程實(shí)數(shù)根存在條件是解答此題的基礎(chǔ),正確確定的取值范圍,并依靠熟練的解不等式的基本技能和一定的邏輯推理,從而篩選出,這也正是解答本題的基本技巧。 二、判別一元二次方程兩根的符號(hào)。 例1:不解方程,判別方程兩根的符號(hào)。 分析:對(duì)于來(lái)說(shuō),往往二次項(xiàng)系數(shù),一次項(xiàng)系數(shù),常
5、數(shù)項(xiàng)皆為已知,可據(jù)此求出根的判別式,但只能用于判定根的存在與否,若判定根的正負(fù),則需要確定 或的正負(fù)情況。因此解答此題的關(guān)鍵是:既要求出判別式的值,又要確定 或的正負(fù)情況。 解:,4×2×(7)650 方程有兩個(gè)不相等的實(shí)數(shù)根。 設(shè)方程的兩個(gè)根為, 0 原方程有兩個(gè)異號(hào)的實(shí)數(shù)根。 說(shuō)明:判別根的符號(hào),需要把“根的判別式”和“根與系數(shù)的關(guān)系”結(jié)合起來(lái)進(jìn)行確定,另外由于本題中0,所以可判定方程的根為一正一負(fù);倘若0,仍需考慮的正負(fù),方可判別方程是兩個(gè)正根還是兩個(gè)負(fù)根。 三、已知一元二次方程的一個(gè)根,求出
6、另一個(gè)根以及字母系數(shù)的值。 例2:已知方程的一個(gè)根為2,求另一個(gè)根及的值。 分析:此題通常有兩種解法:一是根據(jù)方程根的定義,把代入原方程,先求出的值,再通過(guò)解方程辦法求出另一個(gè)根;二是利用一元二次方程的根與系數(shù)的關(guān)系求出另一個(gè)根及的值。 解法一:把代入原方程,得: 即 解得 當(dāng)時(shí),原方程均可化為: , 解得: 方程的另一個(gè)根為4,的值為3或1。 解法二:設(shè)方程的另一個(gè)根為, 根據(jù)題意,利用韋達(dá)定理得: , ,把代入,可得:
7、160;把代入,可得: , 即 解得 方程的另一個(gè)根為4,的值為3或1。 說(shuō)明:比較起來(lái),解法二應(yīng)用了韋達(dá)定理,解答起來(lái)較為簡(jiǎn)單。 例3:已知方程有兩個(gè)實(shí)數(shù)根,且兩個(gè)根的平方和比兩根的積大21,求的值。 分析:本題若利用轉(zhuǎn)化的思想,將等量關(guān)系“兩個(gè)根的平方和比兩根的積大21”轉(zhuǎn)化為關(guān)于的方程,即可求得的值。 解:方程有兩個(gè)實(shí)數(shù)根, 解這個(gè)不等式,得0 設(shè)方程兩根為 則, 整理得: 解得: 又, 說(shuō)明:當(dāng)求出后,還需注意隱含
8、條件,應(yīng)舍去不合題意的。 四、運(yùn)用判別式及根與系數(shù)的關(guān)系解題。 例5:已知、是關(guān)于的一元二次方程的兩個(gè)非零實(shí)數(shù)根,問(wèn)和能否同號(hào)?若能同號(hào),請(qǐng)求出相應(yīng)的的取值范圍;若不能同號(hào),請(qǐng)說(shuō)明理由, 解:因?yàn)殛P(guān)于的一元二次方程有兩個(gè)非零實(shí)數(shù)根, 則有 又、是方程的兩個(gè)實(shí)數(shù)根,所以由一元二次方程根與系數(shù)的關(guān)系,可得: 假設(shè)、同號(hào),則有兩種可能: (1) (2)
9、60;若, 則有: ; 即有: 解這個(gè)不等式組,得 時(shí)方程才有實(shí)樹根,此種情況不成立。 若 , 則有: 即有: 解這個(gè)不等式組,得; 又,當(dāng)時(shí),兩根能同號(hào) 說(shuō)明:一元二次方程根與系數(shù)的關(guān)系深刻揭示了一元二次方程中根與系數(shù)的內(nèi)在聯(lián)系,是分析研究有關(guān)一元二次方程根的問(wèn)題的重要工具,也是計(jì)算有關(guān)一元二次方程根的計(jì)算問(wèn)題的重要工具。知識(shí)的運(yùn)用方法靈活多樣,是設(shè)計(jì)考察創(chuàng)新能力試題的良好載體,在中考中與此有聯(lián)系的試題出現(xiàn)頻率很高,應(yīng)是同學(xué)們
10、重點(diǎn)練習(xí)的內(nèi)容。 六、運(yùn)用一元二次方程根的意義及根與系數(shù)的關(guān)系解題。 例:已知、是方程的兩個(gè)實(shí)數(shù)根,求的值。 分析:本題可充分運(yùn)用根的意義和根與系數(shù)的關(guān)系解題,應(yīng)摒棄常規(guī)的求根后,再帶入的方法,力求簡(jiǎn)解。 解法一:由于是方程的實(shí)數(shù)根,所以 設(shè),與相加,得: ) (變形目的是構(gòu)造和) 根據(jù)根與系數(shù)的關(guān)系,有: , 于是,得: =0 解法二:由于、是方程的實(shí)數(shù)根, 說(shuō)明:既要熟悉問(wèn)題
11、的常規(guī)解法,也要隨時(shí)想到特殊的簡(jiǎn)捷解法,是解題能力提高的重要標(biāo)志,是努力的方向。 有關(guān)一元二次方程根的計(jì)算問(wèn)題,當(dāng)根是無(wú)理數(shù)時(shí),運(yùn)算將十分繁瑣,這時(shí),如果方程的系數(shù)是有理數(shù),利用根與系數(shù)的關(guān)系解題可起到化難為易、化繁為簡(jiǎn)的作用。這類問(wèn)題在解法上靈活多變,式子的變形具有創(chuàng)造性,重在考查能力,多年來(lái)一直受到命題老師的青睞。 七、運(yùn)用一元二次方程根的意義及判別式解題。 例8:已知兩方程和至少有一個(gè)相同的實(shí)數(shù)根,求這兩個(gè)方程的四個(gè)實(shí)數(shù)根的乘積。 分析:當(dāng)設(shè)兩方程的相同根為時(shí),根據(jù)根的意義,可以構(gòu)成關(guān)于和的二元方程組,得解后再由根與系數(shù)的關(guān)系求值。 解:
12、設(shè)兩方程的相同根為, 根據(jù)根的意義, 有 兩式相減,得 當(dāng)時(shí), ,方程的判別式
13、 方程無(wú)實(shí)數(shù)解 當(dāng)時(shí), 有實(shí)數(shù)解 代入原方程,得,
14、60; 所以 于是,兩方程至少有一個(gè)相同的實(shí)數(shù)根,4個(gè)實(shí)數(shù)根的相乘積為 說(shuō)明:(1)本題的易錯(cuò)點(diǎn)為忽略對(duì)的討論和判別式的作用,常常除了犯有默認(rèn)的錯(cuò)誤,甚至還會(huì)得出并不存在的解: 當(dāng)時(shí),兩方程相同,方程的另一
15、根也相同,所以4個(gè)根的相乘積為:; (2)既然本題是討論一元二次方程的實(shí)根問(wèn)題,就應(yīng)首先確定方程有實(shí)根的條件: 且 另外還應(yīng)注意:求得的的值必須滿足這兩個(gè)不等式才有意義。 【趁熱打鐵】 一、填空題: 1、如果關(guān)于的方程的兩根之差為2,那么 。 2、已知關(guān)于的一元二次方程兩根互為倒數(shù),則 &
16、#160; 。 3、已知關(guān)于的方程的兩根為,且,則 。 4、已知是方程的兩個(gè)根,那么: ; ; 。 5、已知關(guān)于的一元二次方程的兩根為和,且,則
17、60; ; 。 6、如果關(guān)于的一元二次方程的一個(gè)根是,那么另一個(gè)根是 ,的值為 。 7、已知是的一根,則另一根為
18、 ,的值為 。 8、一個(gè)一元二次方程的兩個(gè)根是和,那么這個(gè)一元二次方程為: 。 二、求值題: 1、已知是方程的兩個(gè)根,利用根與系數(shù)的關(guān)系,求的值。 2、已知是方程的兩個(gè)根,利用根與系數(shù)的關(guān)系,求的值。 3、已知是方程的兩個(gè)根,利用根與系數(shù)的關(guān)系,求的值。 4、已知兩數(shù)的和等于6,這兩數(shù)的積是4,求這兩數(shù)。 5、已知關(guān)于x的方程的兩根滿足關(guān)系式,求的
19、值及方程的兩個(gè)根。 6、已知方程和有一個(gè)相同的根,求的值及這個(gè)相同的根。 三、能力提升題: 1、實(shí)數(shù)在什么范圍取值時(shí),方程有正的實(shí)數(shù)根? 2、已知關(guān)于的一元二次方程 (1)求證:無(wú)論取什么實(shí)數(shù)值,這個(gè)方程總有兩個(gè)不相等的實(shí)數(shù)根。 (2)若這個(gè)方程的兩個(gè)實(shí)數(shù)根、滿足,求的值。 3、若,關(guān)于的方程有兩個(gè)相等的正的實(shí)數(shù)根,求的值。 4、是否存在實(shí)數(shù),使關(guān)于的方程的兩個(gè)實(shí)根,滿足,如果存在,試求出所有滿足條件的的值,如果不存在,請(qǐng)說(shuō)明理由。 5、已知關(guān)于的一元二
20、次方程()的兩實(shí)數(shù)根為,若,求的值。 6、實(shí)數(shù)、分別滿足方程和,求代數(shù)式 的值。 答案與提示: 一、填空題: 1、提示:, ,解得: 2、提示:,由韋達(dá)定理得:, 解得:,代入檢驗(yàn),有意義,。 3、提示:由于韋達(dá)定理得:, ,解得:。 4、提示:由韋達(dá)定理得:, ;由,可判定方程的兩根異號(hào)。有兩種情況:設(shè)0,0,則 ;設(shè)0,0,則。 5、提示:由韋達(dá)定理得:,。 6、提示:設(shè),由韋達(dá)定理得:,解得:,即。 7、提示:設(shè),由韋達(dá)定理得:, , 8、提示:設(shè)所求的一元二次方程為,那么, ,即;設(shè)所求的一元二次方程為: 二、求值題: 1、提示:由韋達(dá)定理得:, 2、提示:由韋達(dá)定理得:, 3、提示:由韋達(dá)定理得:, 4、提示:設(shè)這兩個(gè)數(shù)為,于是有,因此可看作方程的兩根,即,所以可得方程:,解得:,所以所求的兩個(gè)數(shù)分別是
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 道德義務(wù)性質(zhì)的贈(zèng)與合同如何認(rèn)定4篇
- 臨聘幼兒園教師合同3篇
- 臨時(shí)工勤人員聘用合同2篇
- 出租夜班租賃合同6篇
- 2025商業(yè)地產(chǎn)租賃合同模板
- 2025校園文化墻內(nèi)容更新合同
- 飯店供貨合同協(xié)議書范本
- 新能源合同協(xié)議書怎么寫
- 2025年四川省事業(yè)單位聘用版合同書
- 2025年城市房屋租賃合同范本2
- 小升初語(yǔ)文閱讀技巧第十講把握人物情感變化含例題解析答案
- 餐飲合同股份協(xié)議書
- 第16課《學(xué)先鋒 做先鋒》(第二課時(shí))教案教學(xué)設(shè)計(jì) 2025道德與法治一年級(jí)下冊(cè)
- 食管狹窄試題答案及解析
- 上海地理會(huì)考試卷及答案
- 《拼多多營(yíng)銷策略》課件
- 【北京市人社局】2025年北京市人力資源市場(chǎng)薪酬數(shù)據(jù)報(bào)告(一季度)
- 礦山出售合同協(xié)議
- 醫(yī)院5s管理制度
- 嬰兒牛奶蛋白過(guò)敏預(yù)防策略(2025版)解讀
- 2025年濟(jì)南市中區(qū)九年級(jí)中考英語(yǔ)一??荚囋囶}(含答案)
評(píng)論
0/150
提交評(píng)論