版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、求數(shù)列前N項和的七種方法1. 公式法等差數(shù)列前n項和:特別的,當(dāng)前n項的個數(shù)為奇數(shù)時,即前n項和為中間項乘以項數(shù)。這個公式在很多時候可以簡化運(yùn)算。等比數(shù)列前n項和:q=1時,特別要注意對公比的討論。其他公式:1、 2、3、例1 已知,求的前n項和.解:由 由等比數(shù)列求和公式得 (利用常用公式) 1例2 設(shè)Sn1+2+3+n,nN*,求的最大值.解:由等差數(shù)列求和公式得 , (利用常用公式) 當(dāng) ,即n8時,2. 錯位相減法這種方法是在推導(dǎo)等比數(shù)列的前n項和公式時所用的方法,這種方法主要用于求數(shù)列an·bn的前n項和,其中 an 、 bn 分別是等差數(shù)列和等比數(shù)列.例3 求和:解:由題
2、可知,的通項是等差數(shù)列2n1的通項與等比數(shù)列的通項之積設(shè). (設(shè)制錯位)得 (錯位相減)再利用等比數(shù)列的求和公式得: 例4 求數(shù)列前n項的和.解:由題可知,的通項是等差數(shù)列2n的通項與等比數(shù)列的通項之積設(shè) (設(shè)制錯位)得 (錯位相減) 練習(xí):求:Sn=1+5x+9x2+······+(4n-3)xn-1 解:Sn=1+5x+9x2+······+(4n-3)xn-1 兩邊同乘以x,得 x Sn=x+5 x2+9x3+·····
3、·+(4n-3)xn -得,(1-x)Sn=1+4(x+ x2+x3+······+ )-(4n-3)xn 當(dāng)x=1時,Sn=1+5+9+······+(4n-3)=2n2-n 當(dāng)x1時,Sn= 1 1-x 4x(1-xn) 1-x +1-(4n-3)xn 3. 反序相加法求和這是推導(dǎo)等差數(shù)列的前n項和公式時所用的方法,就是將一個數(shù)列倒過來排列(反序),再把它與原數(shù)列相加,就可以得到n個. 例5 求的值解:設(shè). 將式右邊反序得 (反序) 又因為 +得 (反序相加)8
4、9 S44.54. 分組法求和有一類數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列,若將這類數(shù)列適當(dāng)拆開,可分為幾個等差、等比或常見的數(shù)列,然后分別求和,再將其合并即可.例6 求數(shù)列的前n項和:,解:設(shè)將其每一項拆開再重新組合得 (分組)當(dāng)a1時, (分組求和)當(dāng)時,例7 求數(shù)列n(n+1)(2n+1)的前n項和.解:設(shè) 將其每一項拆開再重新組合得 (分組) (分組求和) 練習(xí):求數(shù)列的前n項和。解: 5. 裂項法求和這是分解與組合思想在數(shù)列求和中的具體應(yīng)用. 裂項法的實質(zhì)是將數(shù)列中的每項(通項)分解,然后重新組合,使之能消去一些項,最終達(dá)到求和的目的. 通項分解(裂項)如:(1) (2)(3) (4)
5、(5)(6)例9 求數(shù)列的前n項和.解:設(shè) (裂項)則 (裂項求和) 例10 在數(shù)列an中,又,求數(shù)列bn的前n項的和.解: (裂項) 數(shù)列bn的前n項和 (裂項求和) 例11 求證:解:設(shè) (裂項) (裂項求和) 原等式成立 練習(xí):求 1 3, 1 1 5, 1 3 5, 1 63之和。 解: 6. 合并法求和針對一些特殊的數(shù)列,將某些項合并在一起就具有某種特殊的性質(zhì),因此,在求數(shù)列的和時,可將這些項放在一起先求和,然后再求Sn. 例12 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179&
6、#176;的值.解:設(shè)Sn cos1°+ cos2°+ cos3°+···+ cos178°+ cos179° (找特殊性質(zhì)項)Sn (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和) 0例13 數(shù)列an:,求S2002.解:設(shè)S2002由可得 (找特殊性質(zhì)項)S2002
7、(合并求和)5例14在各項均為正數(shù)的等比數(shù)列中,若的值.解:設(shè)由等比數(shù)列的性質(zhì) (找特殊性質(zhì)項)和對數(shù)的運(yùn)算性質(zhì) 得 (合并求和)107. 利用數(shù)列的通項求和先根據(jù)數(shù)列的結(jié)構(gòu)及特征進(jìn)行分析,找出數(shù)列的通項及其特征,然后再利用數(shù)列的通項揭示的規(guī)律來求數(shù)列的前n項和,是一個重要的方法.例15 求之和.解:由于 (找通項及特征) (分組求和)例16 已知數(shù)列an:的值.解: (找通項及特征) (設(shè)制分組) (裂項) (分組、裂項求和) 練習(xí):求5,55,555,的前n項和。解:an= 5 9(10n-1)Sn = 5 9(10-1)+ 5 9(102-1) + 5 9(103-1) + + 5 9(10n-1) = 5 9(10+102+103+10n)-n = (10n1-9n-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 石河子大學(xué)《醫(yī)學(xué)統(tǒng)計學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《食品貯藏與保鮮》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《結(jié)構(gòu)力學(xué)一》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《復(fù)變函數(shù)》2022-2023學(xué)年第一學(xué)期期末試卷
- 智慧高速解決方案
- 沈陽理工大學(xué)《審計學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 2018年四川內(nèi)江中考滿分作文《我心中的英雄》13
- 沈陽理工大學(xué)《化工工藝設(shè)計》2022-2023學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《產(chǎn)品仿生學(xué)應(yīng)用設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州海珠區(qū)法院判決繼續(xù)履行勞動合同的案例
- 國家開放大學(xué)《中文學(xué)科論文寫作》形考任務(wù)1-4參考答案
- 配電柜的維護(hù)、管理、保養(yǎng)方案
- 2024年廣東佛山市三水海江建設(shè)投資有限公司招聘筆試參考題庫含答案解析
- 大學(xué)生職業(yè)生涯發(fā)展展示
- 兒科護(hù)理風(fēng)險管理
- 鼻飼的常見并發(fā)癥及處理醫(yī)學(xué)
- 中國古代文學(xué)中的海洋意象與文化內(nèi)涵探究
- 小學(xué)教育的教師角色與素質(zhì)
- 慢性胃炎胃鏡報告
- 子宮腺肌病病例分析報告
- 犯罪心理學(xué)-第五章不同犯罪類型的心理學(xué)分析課件
評論
0/150
提交評論