直線與圓定點定值問題_第1頁
直線與圓定點定值問題_第2頁
直線與圓定點定值問題_第3頁
直線與圓定點定值問題_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、直線與圓定點,定值范圍問題習題1.直線,則直線過定點_.2.若圓上有且僅有兩個點到直線的距離等于,則半徑的取值范圍為_.3.在平面直角坐標系中,圓的方程為,若直線上至少存在一點,使得以該點為圓心,1為半徑的圓與圓有公共點,則的最大值是 _4.圓,則圓過定點_.5.若直線y=x+b與曲線有兩個不同交點,則b的取值范圍_.6.平面內(nèi)動點到定點的距離之比為,則動點的軌跡方程是_.7已知圓x2y22x4y10關于直線2axby20(a,bR)對稱,則ab的取值范圍是_8.一束光線從點A(1,1)出發(fā)經(jīng)x軸反射,到達圓C:(x2)2(y3)21上一點的最短路程是_9.設有一組圓Ck:(xk1)2(y3k

2、)22k4(kN*)下列四個命題正確的序號有: 存在一條定直線與所有的圓均相切;存在一條定直線與所有的圓均相交;存在一條定直線與所有的圓均不相交; 所有的圓均不經(jīng)過原點10.已知過點A(0,1),且斜率為的直線與圓:,相交于M、N兩點.(1)求實數(shù)的取值范圍;(2)AMAN是否為定值,若是,求出定值;若不是,請說明理由。11.已知C,直線mx-y+1-m=0(1)證明:對于,直線與圓總有兩個不同的交點A,B,(2)求弦AB中點的軌跡方程,并說明軌跡是什么曲線。(3)若定點P(1,1)分弦滿足PB=2PA,求AB直線方程12.已知O過點P作傾斜角互補的直線交圓A,B,證明直線AB的斜率為定值。1

3、3.點A(0,2)是圓內(nèi)的一定點,B,C是這個圓上的兩動點,若,求BC中點M的軌跡方程,并說明軌跡的形狀。14.已知:點P是圓上的一個動點,點A是軸上的定點,坐標為(12,0),當P點在圓上運動時,求線段PA的中點M的軌跡方程15.圓內(nèi)一定點A,在圓上作弦MN,使,求弦MN中點P的軌跡方程16.如圖,已知定點A(),點Q是圓上的動點,的平分線交于M,當Q點在圓上移動時,求動點M的軌跡方程17.由點P分別向兩定圓及圓所引切線段長度之比為1:2,求點P的軌跡方程18.平面上有兩點A(-1,0),B(1,0),P為圓上的一點,試求的最大值與最小值,并求相應的P點坐標。20.已知與相切的直線交軸、軸于

4、A、B兩點,O為坐標原點,.(1)求證:;(2)求線段AB中點P的軌跡;(3)求面積的最小值21.已知圓的方程為,直線l的方程為,點在直線上,過點作圓的切線PA、PB,切點為.(1) 若,試求點的坐標;(2) 若點的坐標為,過作直線與圓交于兩點,當時,求直線的方程;(3) 求證:經(jīng)過三點的圓必過定點,并求出所有定點的坐標22.已知M:,Q是X軸上的動點,QA,QB分別切M于A,B兩點,(1) 若求,Q,點的坐標以及MQ的直線方程;(2) 求證AB過一定點;23.已知圓C:,點A(5,0),直線l:x2y0.(1)求與圓C相切,且與直線l垂直的直線方程;(2)在直線OA上,存在點B(不同于A),滿足:對于圓上任一點P,都有為常數(shù),并求滿足條件的B的坐標。,24.若動點P在直線:x-y-2=0上,點Q在直線x-y-6=0上,設線段PQ的中點為M()且則的取值范圍( )25.已知和點(1) 過點M向引切線,求直線的方程;(2) 求以點為圓心,且被直線截得的弦長為的的方程;(3) 設為(2)中上任一點,過點向引切線,切點為.試探究:平面內(nèi)是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由26.已知圓,直線過定點(1) 若與圓相切,求的方程;(2) 若與圓相交于兩點,線段的中點為,又與直線的交

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論