反比例函數的圖象與性質優(yōu)質課教學設計_第1頁
反比例函數的圖象與性質優(yōu)質課教學設計_第2頁
反比例函數的圖象與性質優(yōu)質課教學設計_第3頁
反比例函數的圖象與性質優(yōu)質課教學設計_第4頁
反比例函數的圖象與性質優(yōu)質課教學設計_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、反比例函數的圖象與性質【課時安排】3課時【第一課時】【教學目標】1 .體會并了解反比例函數的圖象的意義。2 .能描點畫出反比例函數的圖象。3 .結合圖象分析并掌握當k>0時反比例函數的性質?!窘虒W重難點】1 .重點:反比例函數的圖象及當k>0時反比例函數的性質。2 .難點:繪制反比例函數的圖象?!窘虒W過程】一、預習導學(一)自主預習教材,并思考下列問題:1 .畫反比例函數圖象的步驟是 、。2 .反比例函數y=k (k為常數,k*0的圖象是,當k>0時,雙曲線的兩支分 x別位于第、象限,它們與 軸、軸都不相交,在每個象限內,y隨x的增大而。3 .函數y =20的圖象在第象限,在

2、每一象限內,y隨x的增大而。x二、探究展示(一)合作探究1 .如何畫反比例函數y =6的圖象? x2 .由組長帶領本組組員共同探討完成。3,由于反比例函數y= 6的圖象是曲線型的,且分成兩支。對此,學生第一次接觸有一定 x的難度,因此需要分幾個層次來探求:(1)可以先估計例如:位置(圖象所在象限、圖象與坐標軸的交點等)、趨勢(上升、下 降等);(2)方法與步驟一一利用描點作圖;列表:取自變量x的哪些值? 一一x是不為零的任何實數,所以不能取 x的值的為零,但在平面直角坐標系內,以自變量x的取值為橫坐標,以相應的函數值y為縱坐標,描出相 應的點。連線:怎樣連線? 一一可在各個象限內按照自變量從小

3、到大的順序用兩條光滑的曲線把所 描的點連接起來觀察上圖,圖象位于哪些象限?圖象與坐標軸相交嗎?在每一象限內,函數值y隨自變量x的變化如何變化?(點名回答)設計意圖:學習正確的作圖過程,在填表過程中感受y隨x的變化規(guī)律,為基于圖象探究函數性質打 下基礎。(二)展示提升9 / 101 .做一做,畫出反比例函數y=3的圖象x設計意圖:提高學生利用描點法畫反比例函數的基本技能, 加深學生對反比例函數圖象的認識, 為下 一步歸納反比例函數的性質做準備。2 .觀察畫出的y=6, y =3的圖象,思考下列問題: x x(1)每個函數的圖象分別位于哪些象限?(2)在每一象限內,函數值y隨自變量x的變化如何變化

4、?先由小組討論交流,教師準確引導,及時點撥和追問,總結出規(guī)律:一般的,當k>0時,反比例函數y=k的圖象由分別在第一、第三象限內的兩支曲線組成, x它們與x軸、y軸都不相交,在每個象限內,函數值 y隨自變量x的增大而減小。設計意圖:讓學生獨立思考、討論交流,經歷從特殊到一般的歸納過程,積累基本活動經驗?!局R梳理】啟發(fā)學生談談本節(jié)課的收獲。1 .用描點法作反比例函數圖象的步驟:列表、描點、連線。2 .圖象性質:反比例函數y=k (k為常數,kw。的圖象是雙曲線,當k>0時,雙曲線 x的兩支分別位于第一、三象限,它們與 x軸、y軸都不相交,在每個象限內,y隨x的增大而減小?!咀鳂I(yè)布置

5、】,一一一一一4 一一入1 .回出反比例函數y=的圖象。x2 .如右圖,這是下列四個函數中哪一個函數的圖象(43A. y=5x B. y = 2x+3C.y=_ D. y = _xx,20 一一 , 一一3 .函數y=二的圖象在第象限,在每一象限內,y隨x的增大而。4 .在反比例函數y=kZ3圖象的每一支曲線上,y都隨x的增大而減小,則k的取值范圍 xk -1是。若關于x, y的函數y=圖象位于第一、三象限,則 k的取值范圍是x0【教學反思】本節(jié)課,通過用描點法畫反比例函數的圖象讓學生理解當k>0時反比例函數y=-的圖象x性質,更直觀、有效運用各種啟發(fā)、激勵的語言,以及小組合作交流、競爭

6、的方式,更能激起 學生的求知的欲望。學生通過展示鍛煉了 口頭表達能力,同時培養(yǎng)了學生分析問題和解決問題 的能力,增強了小組的凝聚力?!镜诙n時】【教學目標】1 .能畫出反比例函數y=k (k為常數,k<0)的圖象。x2 .根據反比例函數y=k (k為常數,k<0)的圖象探索并理解其性質。 x3 .在自主探究反比例函數的性質的過程中, 讓學生初步感知反比例函數的圖象的對稱性?!窘虒W重難點】1 .重點:反比例函數y= (k為常數,k<0)的圖象的畫法及其性質。2 .難點:由反比例函數y=k (k為常數,k<0)的圖象探究出其性質。x【教學過程】一、預習導學(一)自主預習教材

7、完成下列各題:1 .反比例函數y=2 (k為常數,k*0的圖象是由兩支曲線圍成的,這兩支曲線稱為。 x2 .當k<0時,反比例函數y=k的圖象與 的圖象關于x軸對稱。x k3 .當k<0時,反比例函數y=;的圖象由分別在第象限內的兩支曲線組成,它們x與x軸、y軸都,在每個象限內,函數值y隨自變量x的增大而。二、探究展示(一)合作探究探究1:如何畫反比例函數y=-6的圖象? y=-6的圖象與y=9的圖象有什么關系?xxx由組長帶領組員共同探討畫反比例函數 y=-9的圖象的方法。引導學生采用多種方式進行 x自主探索活動:1 .可以通過探索函數y=-6與y=6之間的關系,畫出y=-_6的

8、圖象。 x xx2 .可以用畫反比例函數y= 6的圖象的方式與步驟進行自主探索其圖象。x(二)引導學生總結歸納:1 .當k<0時,反比例函數y=k的圖象與y=-k的圖象關于x軸對稱, xx k2 .當k<0時,反比例函數y=k的圖象由分別在第二、四象限內的兩支曲線組成,它們與 xx軸、y軸都不相交,在每個象限內,函數值 y隨自變量x的增大而增大。3 .可用描點法畫反比例函數y=k (k<0)的圖象。 x設計意圖:鞏固了反比例函數圖象的基本作法,也為后面觀察分析歸納出反比例函數圖象的性質增加感性認識。探究2:反比例函數y=k (k為常數,kw。的圖象的對稱性。, x先讓學生觀察

9、函數y=-6與y=6的圖象,討論交流它們各自具有什么對稱性, 然后總結得 x x出:反比例函數y=k (k為常數,k*0的圖象是中心對稱圖形,其對稱中心為坐標原點,其 x圖象還是軸對稱圖形,對稱軸有兩條,分別是一、三象限角平分線(即直線y=x)和二、四象限角平分線(即直線y=-x)。探究3:根據我們已經學過的反比例函數的性質填寫下表,并說說k>0和k<0時圖象性質的區(qū)別。反比例函數ky =7 (k¥0)k的符號k>0k<0圖象(雙曲線)41 yx、y的取值范圍x的取值范圍xWO y的取值范圍y.0x的取值范圍xw。y的取值范圍y三0位置第一,三象限內第二,四象

10、限內增減性令-象限內,y隨x的增大而減小每一象限內,y隨x的增大而增大漸近性反比例函數的圖象無限接近于 x, y軸,但永遠達不到x, y軸,回圖象 時,要體現出這個特點。對稱性反比例函數的圖象是關于原點成中心對稱的圖形。反比例函數的圖象也 是軸對稱圖形。設計意圖:使學生經歷由特殊到一般的過程, 培養(yǎng)學生的抽象概括能力、滲透分類討論思 想和類比思想。(二)展示提升4一一一,一一 y 二 一 ,1 .回出反比例函數x的圖象iy 二 一2 .反比例函數2x的圖象在第 、象限,在每個象限內,函數值y隨自變量x的增大而,圖象關于一成中心對稱,關于成軸對稱。m -3y =3,若反比例函數x的圖象在第二、四

11、象限,求 m的取值范圍。設計意圖:通過練習及時去鞏固學生對反比例函數圖象的畫法及其性質的理解及是否能夠正確的運 用其性質解決簡單問題。【知識梳理】(一)本節(jié)課有什么收獲?1 .用描點法畫反比例函數y=k (k<0)的圖象步驟:列表,描點,連線。 x2 .反比例函數y=§的圖象性質:圖象與x軸、y軸者B不相交,當k>0時,圖象在第一、 x三象限,在每個象限內,函數值y隨自變量x的增大而減??;當k<0時,圖象在第二、四象限, 在每個象限內,函數值y隨自變量x的增大而增大。3 .反比例函數y=k (k為常數,kw。的圖象關于原點成中心對稱,當 k>0時,圖象關 x于

12、直線y=-x成軸對稱,當k<0時,圖象關于直線y=x成軸對稱。【作業(yè)布置】8 y =1.回出反比例函數x的圖象。1 -ky =2 .在反比例函數x的圖象的每一支曲線上,y隨x的增大而增大,則k的值為<2y 二3 .已知點(2,yi), (3,y2)在函數 x的圖象上,試比較 y1,y2的大小。【教學反思】在整個的設計過程中,始終體現以學生為中心的教育理念。 在學生已有的基礎上進行設問 和引導,關注學生的認知過程,重視討論、交流和合作,重視探究問題習慣的培養(yǎng)和養(yǎng)成。同 時,考慮不同學生的個性差異和發(fā)展層次,使不同的學生都有發(fā)展,體現因材施教的原則?!镜谌n時】【教學目標】1 .能用待

13、定系數法求反比例函數的解析式。2 .能用反比例函數的定義和性質解決實際問題【教學重難點】1 .重點:能用待定系數法求反比例函數的解析式。2 .難點:根據反比例函數的圖象或表達式來理解反比例函數的性質。【教學過程】一、預習導學自主學習教材,并思考下列問題:1 .思考怎樣用待定系數法求反比例函數的解析式?2 .認真閱讀,書上是運用反比例函數的什么知識解決問題的?3 .用待定系數法時為什么要標明k1、k2?二、探究展示合作探究:如何解答教材的動腦筋? k由組長帶領組員討論交流,教師適當引導,然后總結得出:由于反比例函數y=k中只有x一個待定系數k,因此只需要圖象上一點的坐標,把其值代入得到一個關于k

14、的一元一次方程,求出k值即可確定函數關系式。知道反比例函數的表達式就可以知道某一點是否在這個函數圖象上。由k值得正負就可以知道函數圖象分布的象限及函數值隨自變量值的變化情況。(二)展示提升 k1.反比例函數y=k的圖象如圖所小,根據圖象,回答下列問題: x(1) k的取值范圍是k>0還是k<0?說明理由(2)如果點A(-3,y1), B(-2,y2)是該函數圖象上的兩點,試比較 y1, y2的大小。(三)設計意圖:讀圖能力訓練,加深學生對反比例函數圖象性質的理解。1 .已知一個正比例函數與一個反比例函數的圖象交于點P(-3,4),試求出它們讓你的表達式,并在同一坐標系內畫出這兩個函

15、數的圖象。提示:先設兩個函數的表達式,且兩個函數表示式中的比例系數應用ki、k2區(qū)分。2 .學生分組討論交流,交流后小組代表展示,教師進行補充。(四)設計意圖:揭示知識間的內在聯系,有助于構建較完整的知識網絡?!局R梳理】啟發(fā)學生談談本節(jié)課的收獲。1 .用待定系數法求反比例函數的解析式。2 .用待定系數法求反比例函數的解析式步驟:k(1)設出反比例函數的解析式v=_ (kw)。x(2)把已知條件(一組自變量與函數的對應值)代入解析式,得到關于 k的一元一次方 程。(3)解這個方程,求出待定系數ko(4)將k的值代入得出反比例函數的解析式?!咀鳂I(yè)布置】k1.已知反比例函數y=x的圖象經過點M(-2,2)(1)求這個函數的表達式(2)判斷點A(-4,1), B(1,4)是否在這個函數圖象上(3)這個函數的圖象位于哪些象限?函數值 y隨自變量x的增大而如何變化?2 .已知反比例函數的圖象經過點(a,b),則它的圖象一定也經過()。A. (-a,- b)B. (a - b)C. (- a,b)D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論