




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、古典概型及隨機(jī)數(shù)的產(chǎn)生【學(xué)習(xí)目標(biāo)】1、知識(shí)與技能:(1)正確理解古典概型的兩大特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等;(2)掌握古典概型的概率計(jì)算公式:P(A)=(3)了解隨機(jī)數(shù)的概念;(4)利用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù),并能直接統(tǒng)計(jì)出頻數(shù)與頻率?!局攸c(diǎn)難點(diǎn)】1、正確理解掌握古典概型及其概率公式;2、正確理解隨機(jī)數(shù)的概念,并能應(yīng)用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù)三、學(xué)法與教學(xué)用具:1、與學(xué)生共同探討,應(yīng)用數(shù)學(xué)解決現(xiàn)實(shí)問題;2、通過模擬試驗(yàn),感知應(yīng)用數(shù)字解決問題的方法,自覺養(yǎng)成動(dòng)手、動(dòng)腦的良好習(xí)慣【知識(shí)鏈接】1、創(chuàng)設(shè)情境:(1)擲一枚質(zhì)地均勻的硬幣,結(jié)果只有2個(gè),即“正面朝上
2、”或“反面朝上”,它們都是隨機(jī)事件。(2)一個(gè)盒子中有10個(gè)完全相同的球,分別標(biāo)以號(hào)碼1,2,3,10,從中任取一球,只有10種不同的結(jié)果,即標(biāo)號(hào)為1,2,3,10。師生共同探討:根據(jù)上述情況,你能發(fā)現(xiàn)它們有什么共同特點(diǎn)?2、基本概念:(1)基本事件、古典概率模型、隨機(jī)數(shù)、偽隨機(jī)數(shù)的概念見課本P121126;(2)古典概型的概率計(jì)算公式:P(A)=【學(xué)習(xí)過程】例1 擲一顆骰子,觀察擲出的點(diǎn)數(shù),求擲得奇數(shù)點(diǎn)的概率。分析:擲骰子有6個(gè)基本事件,具有有限性和等可能性,因此是古典概型。解:這個(gè)試驗(yàn)的基本事件共有6個(gè),即(出現(xiàn)1點(diǎn))、(出現(xiàn)2點(diǎn))、(出現(xiàn)6點(diǎn))所以基本事件數(shù)n=6,事件A=(擲得奇數(shù)點(diǎn))
3、=(出現(xiàn)1點(diǎn),出現(xiàn)3點(diǎn),出現(xiàn)5點(diǎn)),其包含的基本事件數(shù)m=3所以,P(A)=0.5例2 從含有兩件正品a1,a2和一件次品b1的三件產(chǎn)品中,每次任取一件,每次取出后不放回,連續(xù)取兩次,求取出的兩件產(chǎn)品中恰有一件次品的概率。解:每次取出一個(gè),取后不放回地連續(xù)取兩次,其一切可能的結(jié)果組成的基本事件有6個(gè),即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括號(hào)內(nèi)左邊的字母表示第1次取出的產(chǎn)品,右邊的字母表示第2次取出的產(chǎn)用A表示“取出的兩種中,恰好有一件次品”這一事件,則A=(a1,b1),(a2,b1),(b1,a1),(b1,a2)事件A由
4、4個(gè)基本事件組成,因而,P(A)=。例3 現(xiàn)有一批產(chǎn)品共有10件,其中8件為正品,2件為次品:(1)如果從中取出一件,然后放回,再取一件,求連續(xù)3次取出的都是正品的概率;(2)如果從中一次取3件,求3件都是正品的概率分析:(1)為返回抽樣;(2)為不返回抽樣解:(1)有放回地抽取3次,按抽取順序(x,y,z)記錄結(jié)果,則x,y,z都有10種可能,所以試驗(yàn)結(jié)果有101010=103種;設(shè)事件A為“連續(xù)3次都取正品”,則包含的基本事件共有888=83種,因此,P(A)= =0.512(2)解法1:可以看作不放回抽樣3次,順序不同,基本事件不同,按抽取順序記錄(x,y,z),則x有10種可能,y有9
5、種可能,z有8種可能,所以試驗(yàn)的所有結(jié)果為1098=720種設(shè)事件B為“3件都是正品”,則事件B包含的基本事件總數(shù)為876=336, 所以P(B)= 0.467解法2:可以看作不放回3次無順序抽樣,先按抽取順序(x,y,z)記錄結(jié)果,則x有10種可能,y有9種可能,z有8種可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以試驗(yàn)的所有結(jié)果有10986=120,按同樣的方法,事件B包含的基本事件個(gè)數(shù)為8766=56,因此P(B)= 0.467例4 利用計(jì)算器產(chǎn)生10個(gè)1100之間的取整數(shù)值的隨機(jī)數(shù)。解:具體操作如下:鍵入PRBRA
6、ND RANDISTAT DECENTERRANDI(1,100)STAT DEGENTERRAND (1,100) 3STAT DEC反復(fù)操作10次即可得之例5 某籃球愛好者,做投籃練習(xí),假設(shè)其每次投籃命中的概率是40%,那么在連續(xù)三次投籃中,恰有兩次投中的概率是多少?分析:其投籃的可能結(jié)果有有限個(gè),但是每個(gè)結(jié)果的出現(xiàn)不是等可能的,所以不能用古典概型的概率公式計(jì)算,我們用計(jì)算機(jī)或計(jì)算器做模擬試驗(yàn)可以模擬投籃命中的概率為40%。解:我們通過設(shè)計(jì)模擬試驗(yàn)的方法來解決問題,利用計(jì)算機(jī)或計(jì)算器可以生產(chǎn)0到9之間的取整數(shù)值的隨機(jī)數(shù)。我們用1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,這樣
7、可以體現(xiàn)投中的概率是40%。因?yàn)槭峭痘@三次,所以每三個(gè)隨機(jī)數(shù)作為一組。例如:產(chǎn)生20組隨機(jī)數(shù):812,932,569,683,271,989,730,537,925,907,113,966,191,431,257,393,027,556這就相當(dāng)于做了20次試驗(yàn),在這組數(shù)中,如果恰有兩個(gè)數(shù)在1,2,3,4中,則表示恰有兩次投中,它們分別是812,932,271,191,393,即共有5個(gè)數(shù),我們得到了三次投籃中恰有兩次投中的概率近似為=25%。例6 你還知道哪些產(chǎn)生隨機(jī)數(shù)的函數(shù)?請(qǐng)列舉出來。解:(1)每次按SHIFT RNA# 鍵都會(huì)產(chǎn)生一個(gè)01之間的隨機(jī)數(shù),而且出現(xiàn)01內(nèi)任何一個(gè)數(shù)的可能性是相
8、同的。(2)還可以使用計(jì)算機(jī)軟件來產(chǎn)生隨機(jī)數(shù),如Scilab中產(chǎn)生隨機(jī)數(shù)的方法。Scilab中用rand()函數(shù)來產(chǎn)生01之間的隨機(jī)數(shù),每周用一次rand()函數(shù),就產(chǎn)生一個(gè)隨機(jī)數(shù),如果要產(chǎn)生ab之間的隨機(jī)數(shù),可以使用變換rand()*(ba)+a得到【學(xué)習(xí)反思】本節(jié)主要研究了古典概型的概率求法,解題時(shí)要注意兩點(diǎn):(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。(2)古典概型的解題步驟;求出總的基本事件數(shù);求出事件A所包含的基本事件數(shù),然后利用公式P(A)=(3)隨機(jī)數(shù)量具有廣泛的應(yīng)用,可以幫助我們安排和模擬一些試驗(yàn),這樣可以代替我們自己做大量重復(fù)試驗(yàn),比如現(xiàn)在很多城市的重要考
9、試采用產(chǎn)生隨機(jī)數(shù)的方法把考生分配到各個(gè)考場(chǎng)中?!净A(chǔ)達(dá)標(biāo)】1在40根纖維中,有12根的長(zhǎng)度超過30mm,從中任取一根,取到長(zhǎng)度超過30mm的纖維的概率是( )A B C D以上都不對(duì)2盒中有10個(gè)鐵釘,其中8個(gè)是合格的,2個(gè)是不合格的,從中任取一個(gè)恰為合格鐵釘?shù)母怕适茿 B C D 3在大小相同的5個(gè)球中,2個(gè)是紅球,3個(gè)是白球,若從中任取2個(gè),則所取的2個(gè)球中至少有一個(gè)紅球的概率是 。4拋擲2顆質(zhì)地均勻的骰子,求點(diǎn)數(shù)和為8的概率。5利用計(jì)算器生產(chǎn)10個(gè)1到20之間的取整數(shù)值的隨機(jī)數(shù)。6用0表示反面朝上,1表正面朝上,請(qǐng)用計(jì)算器做模擬擲硬幣試驗(yàn)。【參考答案】1B提示:在40根纖維中,有12根的
10、長(zhǎng)度超過30mm,即基本事件總數(shù)為40,且它們是等可能發(fā)生的,所求事件包含12個(gè)基本事件,故所求事件的概率為,因此選B.2C提示:(方法1)從盒中任取一個(gè)鐵釘包含基本事件總數(shù)為10,其中抽到合格鐵訂(記為事件A)包含8個(gè)基本事件,所以,所求概率為P(A)=.(方法2)本題還可以用對(duì)立事件的概率公式求解,因?yàn)閺暮兄腥稳∫粋€(gè)鐵釘,取到合格品(記為事件A)與取到不合格品(記為事件B)恰為對(duì)立事件,因此,P(A)=1P(B)=1=.3提示;記大小相同的5個(gè)球分別為紅1,紅2,白1,白2,白3,則基本事件為:(紅1,紅2),(紅1,白1),(紅1,白2)(紅1,白3),(紅2,白3),共10個(gè),其中至少
11、有一個(gè)紅球的事件包括7個(gè)基本事件,所以,所求事件的概率為.本題還可以利用“對(duì)立事件的概率和為1”來求解,對(duì)于求“至多”“至少”等事件的概率頭問題,常采用間接法,即求其對(duì)立事件的概率P(A),然后利用P(A)1P(A)求解。4.解:在拋擲2顆骰子的試驗(yàn)中,每顆骰子均可出現(xiàn)1點(diǎn),2點(diǎn),6點(diǎn)6種不同的結(jié)果,我們把兩顆骰子標(biāo)上記號(hào)1,2以便區(qū)分,由于1號(hào)骰子的一個(gè)結(jié)果,因此同時(shí)擲兩顆骰子的結(jié)果共有66=36種,在上面的所有結(jié)果中,向上的點(diǎn)數(shù)之和為8的結(jié)果有(2,6),(3,5),(4,4),(5,3),(6,2)5種,所以,所求事件的概率為.5解:具體操作如下鍵入PRBPAND RANDI STAT
12、DEGENTERPANDI(1,20) STAT DEGENTERPANDI(1,20) 3 STAT DEGENTER反復(fù)按 鍵10次即可得到。6解:具體操作如下:PRBPAND RANDI STAT DEGENTERPANDI(0,1) STAT DEGENTERPANDI(0,1) 0 STAT DEG鍵入 古典概型及隨機(jī)數(shù)的產(chǎn)生導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】(1)正確理解古典概型的兩大特點(diǎn)(2)掌握古典概型的概率計(jì)算公式:P(A)=(3)了解隨機(jī)數(shù)的概念【重點(diǎn)難點(diǎn)】1、正確理解掌握古典概型及其概率公式;2、正確理解隨機(jī)數(shù)的概念,并能應(yīng)用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù)【學(xué)法指導(dǎo)】一、預(yù)習(xí)目標(biāo):1、正確理解古典概型
13、的兩大特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等;2、掌握古典概型的概率計(jì)算公式:P(A)=3、了解隨機(jī)數(shù)的概念;二、預(yù)習(xí)內(nèi)容:1、基本事件 2、古典概率模型 3、隨機(jī)數(shù) 4、偽隨機(jī)數(shù)的概念 5、古典概型的概率計(jì)算公式:P(A)= 三、提出疑惑同學(xué)們,通過你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中疑惑點(diǎn)疑惑內(nèi)容【知識(shí)鏈接】創(chuàng)設(shè)情境:(1)擲一枚質(zhì)地均勻的硬幣,結(jié)果只有2個(gè),即“正面朝上”或“反面朝上”,它們都是隨機(jī)事件。(2)一個(gè)盒子中有10個(gè)完全相同的球,分別標(biāo)以號(hào)碼1,2,3,10,從中任取一球,只有10種不同的結(jié)果,即標(biāo)號(hào)為1,2,3,1
14、0。根據(jù)上述情況,你能發(fā)現(xiàn)它們有什么共同特點(diǎn)?【學(xué)習(xí)過程】例1 擲一顆骰子,觀察擲出的點(diǎn)數(shù),求擲得奇數(shù)點(diǎn)的概率。解:例2 從含有兩件正品a1,a2和一件次品b1的三件產(chǎn)品中,每次任取一件,每次取出后不放回,連續(xù)取兩次,求取出的兩件產(chǎn)品中恰有一件次品的概率。解:例3 現(xiàn)有一批產(chǎn)品共有10件,其中8件為正品,2件為次品:(1)如果從中取出一件,然后放回,再取一件,求連續(xù)3次取出的都是正品的概率;(2)如果從中一次取3件,求3件都是正品的概率解:例4 利用計(jì)算器產(chǎn)生10個(gè)1100之間的取整數(shù)值的隨機(jī)數(shù)。解例5 某籃球愛好者,做投籃練習(xí),假設(shè)其每次投籃命中的概率是40%,那么在連續(xù)三次投籃中,恰有兩次
15、投中的概率是多少?解:例6 你還知道哪些產(chǎn)生隨機(jī)數(shù)的函數(shù)?請(qǐng)列舉出來。解:【學(xué)習(xí)反思】(1)、數(shù)學(xué)知識(shí): (2)、數(shù)學(xué)思想方法:【基礎(chǔ)達(dá)標(biāo)】:一、選擇題1在40根纖維中,有12根的長(zhǎng)度超過30mm,從中任取一根,取到長(zhǎng)度超過30mm的纖維的概率是( )A B C D以上都不對(duì)2盒中有10個(gè)鐵釘,其中8個(gè)是合格的,2個(gè)是不合格的,從中任取一個(gè)恰為合格鐵釘?shù)母怕适茿 B C D 3將骰子拋2次,其中向上的數(shù)之和是5的概率是( )A、B、C、D、9二、填空題4在大小相同的5個(gè)球中,2個(gè)是紅球,3個(gè)是白球,若從中任取2個(gè),則所取的2個(gè)球中至少有一個(gè)紅球的概率是 。5拋擲2顆質(zhì)地均勻的骰子,則點(diǎn)數(shù)和為8
16、的概率為 。三、解答題6用0表示反面朝上,1表正面朝上,請(qǐng)用計(jì)算器做模擬擲硬幣試驗(yàn)。4提示;記大小相同的5個(gè)球分別為紅1,紅2,白1,白2,白3,則基本事件為:(紅1,紅2),(紅1,白1),(紅1,白2)(紅1,白3),(紅2,白3),共10個(gè),其中至少有一個(gè)紅球的事件包括7個(gè)基本事件,所以,所求事件的概率為.本題還可以利用“對(duì)立事件的概率和為1”來求解,對(duì)于求“至多”“至少”等事件的概率頭問題,常采用間接法,即求其對(duì)立事件的概率P(A),然后利用P(A)1P(A)求解。5.解:在拋擲2顆骰子的試驗(yàn)中,每顆骰子均可出現(xiàn)1點(diǎn),2點(diǎn),6點(diǎn)6種不同的結(jié)果,我們把兩顆骰子標(biāo)上記號(hào)1,2以便區(qū)分,由于
17、1號(hào)骰子的一個(gè)結(jié)果,因此同時(shí)擲兩顆骰子的結(jié)果共有66=36種,在上面的所有結(jié)果中,向上的點(diǎn)數(shù)之和為8的結(jié)果有(2,6),(3,5),(4,4),(5,3),(6,2)5種,所以,所求事件的概率為.6解:具體操作如下:PRBPAND RANDI STAT DEGENTERPANDI(0,1) STAT DEGENTERPANDI(0,1) 0 STAT DEG鍵入【拓展提升】一、選擇題1、從長(zhǎng)度為1,3,5,7,9五條線段中任取三條能構(gòu)成三角形的概率是( )A、B、C、D、2、將8個(gè)參賽隊(duì)伍通過抽簽分成A、B兩組,每組4隊(duì),其中甲、乙兩隊(duì)恰好不在同組的概率為( )A、B、C、D、3、袋中有白球5只,黑球6只,連續(xù)取出3只球,則順序?yàn)椤昂诎缀凇钡母怕蕿? )A、B、C、D、二、填空題4、接連三次
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海短缺藥管理制度
- 科研設(shè)備研發(fā)管理制度
- 紡織公司理單管理制度
- 編制招聘錄用管理制度
- 網(wǎng)格清掃保潔管理制度
- 藥品包裝區(qū)域管理制度
- 鹽酸倉(cāng)儲(chǔ)使用管理制度
- 社區(qū)環(huán)境建設(shè)管理制度
- 電商員工出差管理制度
- 社區(qū)器材物資管理制度
- 青島海明城市發(fā)展有限公司及全資子公司招聘筆試真題2022
- 浙江省杭州市2024屆數(shù)學(xué)四下期末考試試題含解析
- 北京市首都師范大學(xué)附屬回龍觀育新學(xué)校2025屆數(shù)學(xué)高一下期末統(tǒng)考試題含解析
- 廣東省深圳市四年級(jí)數(shù)學(xué)下學(xué)期期末備考真題重組卷
- 2024年高考物理熱點(diǎn)磁場(chǎng)中的旋轉(zhuǎn)圓、放縮圓、平移圓、磁聚焦模型(學(xué)生版)
- 三年級(jí)下冊(cè)語(yǔ)文單元字詞專項(xiàng)練習(xí)-第1單元
- 鳥巢建筑分析
- 聯(lián)合體施工組織設(shè)計(jì)審批流程
- 中華民族共同體概論課件專家版10第十講 中外會(huì)通與中華民族鞏固壯大(明朝時(shí)期)
- 2021年10月自考02326操作系統(tǒng)試題及答案含解析
- 中華民族共同體概論課件專家版5第五講 大一統(tǒng)與中華民族共同體初步形成(秦漢時(shí)期)
評(píng)論
0/150
提交評(píng)論