




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、第二章矩陣及其運算 1. 已知線性變換: , 求從變量x1, x2, x3到變量y1, y2, y3的線性變換. 解 由已知: , 故 , . 2. 已知兩個線性變換 , , 求從z1, z2, z3到x1, x2, x3的線性變換. 解 由已知 , 所以有. 3. 設, , 求3AB-2A及ATB. 解 , . 4. 計算下列乘積: (1); 解 . (2); 解 =(1´3+2´2+3´1)=(10). (3); 解 . (4) ; 解 . (5); 解 =(a11x1+a12x2+a13x3 a12x1+a22x2+a23x3 a13x1+a23x2+a33
2、x3) . 5. 設, , 問: (1)AB=BA嗎? 解 AB¹BA. 因為, , 所以AB¹BA. (2)(A+B)2=A2+2AB+B2嗎? 解 (A+B)2¹A2+2AB+B2. 因為, , 但 , 所以(A+B)2¹A2+2AB+B2. (3)(A+B)(A-B)=A2-B2嗎? 解 (A+B)(A-B)¹A2-B2. 因為, , , 而 , 故(A+B)(A-B)¹A2-B2. 6. 舉反列說明下列命題是錯誤的: (1)若A2=0, 則A=0; 解 取, 則A2=0, 但A¹0. (2)若A2=A, 則A=0或A
3、=E; 解 取, 則A2=A, 但A¹0且A¹E. (3)若AX=AY, 且A¹0, 則X=Y . 解 取 , , , 則AX=AY, 且A¹0, 但X¹Y . 7. 設, 求A2, A3, × × ×, Ak. 解 , , × × × × × ×, . 8. 設, 求Ak . 解 首先觀察 , , , , × × × × × ×, . 用數(shù)學歸納法證明: 當k=2時, 顯然成立. 假設k時成立,
4、則k+1時, , 由數(shù)學歸納法原理知: . 9. 設A, B為n階矩陣,且A為對稱矩陣,證明BTAB也是對稱矩陣. 證明 因為AT=A, 所以 (BTAB)T=BT(BTA)T=BTATB=BTAB, 從而BTAB是對稱矩陣. 10. 設A, B都是n階對稱矩陣,證明AB是對稱矩陣的充分必要條件是AB=BA. 證明 充分性: 因為AT=A, BT=B, 且AB=BA, 所以 (AB)T=(BA)T=ATBT=AB, 即AB是對稱矩陣. 必要性: 因為AT=A, BT=B, 且(AB)T=AB, 所以 AB=(AB)T=BTAT=BA. 11. 求下列矩陣的逆矩陣: (1); 解 . |A|=1
5、, 故A-1存在. 因為 , 故 . (2); 解 . |A|=1¹0, 故A-1存在. 因為 , 所以 . (3); 解 . |A|=2¹0, 故A-1存在. 因為 , 所以 . (4)(a1a2× × ×an ¹0) . 解 , 由對角矩陣的性質(zhì)知 . 12. 解下列矩陣方程: (1); 解 . (2); 解 . (3); 解 . (4). 解 . 13. 利用逆矩陣解下列線性方程組: (1); 解 方程組可表示為 , 故 , 從而有 . (2). 解 方程組可表示為 , 故 , 故有 . 14. 設Ak=O (k為正整數(shù)), 證
6、明(E-A)-1=E+A+A2+× × ×+Ak-1. 證明 因為Ak=O , 所以E-Ak=E. 又因為 E-Ak=(E-A)(E+A+A2+× × ×+Ak-1), 所以 (E-A)(E+A+A2+× × ×+Ak-1)=E, 由定理2推論知(E-A)可逆, 且 (E-A)-1=E+A+A2+× × ×+Ak-1. 證明 一方面, 有E=(E-A)-1(E-A). 另一方面, 由Ak=O, 有 E=(E-A)+(A-A2)+A2-× × ×-
7、Ak-1+(Ak-1-Ak) =(E+A+A2+× × ×+A k-1)(E-A), 故 (E-A)-1(E-A)=(E+A+A2+× × ×+Ak-1)(E-A),兩端同時右乘(E-A)-1, 就有 (E-A)-1(E-A)=E+A+A2+× × ×+Ak-1. 15. 設方陣A滿足A2-A-2E=O, 證明A及A+2E都可逆, 并求A-1及(A+2E)-1. 證明 由A2-A-2E=O得 A2-A=2E, 即A(A-E)=2E, 或 , 由定理2推論知A可逆, 且. 由A2-A-2E=O得 A2-A-
8、6E=-4E, 即(A+2E)(A-3E)=-4E, 或 由定理2推論知(A+2E)可逆, 且. 證明 由A2-A-2E=O得A2-A=2E, 兩端同時取行列式得 |A2-A|=2, 即 |A|A-E|=2, 故 |A|¹0, 所以A可逆, 而A+2E=A2, |A+2E|=|A2|=|A|2¹0, 故A+2E也可逆.由 A2-A-2E=O ÞA(A-E)=2E ÞA-1A(A-E)=2A-1EÞ, 又由 A2-A-2E=OÞ(A+2E)A-3(A+2E)=-4E Þ (A+2E)(A-3E)=-4 E, 所以 (A+2E)
9、-1(A+2E)(A-3E)=-4(A+2 E)-1, . 16. 設A為3階矩陣, , 求|(2A)-1-5A*|. 解 因為, 所以 =|-2A-1|=(-2)3|A-1|=-8|A|-1=-8´2=-16. 17. 設矩陣A可逆, 證明其伴隨陣A*也可逆, 且(A*)-1=(A-1)*. 證明 由, 得A*=|A|A-1, 所以當A可逆時, 有 |A*|=|A|n|A-1|=|A|n-1¹0, 從而A*也可逆. 因為A*=|A|A-1, 所以 (A*)-1=|A|-1A. 又, 所以 (A*)-1=|A|-1A=|A|-1|A|(A-1)*=(A-1)*. 18. 設
10、n階矩陣A的伴隨矩陣為A*, 證明: (1)若|A|=0, 則|A*|=0; (2)|A*|=|A|n-1. 證明 (1)用反證法證明. 假設|A*|¹0, 則有A*(A*)-1=E, 由此得 A=A A*(A*)-1=|A|E(A*)-1=O , 所以A*=O, 這與|A*|¹0矛盾,故當|A|=0時, 有|A*|=0. (2)由于, 則AA*=|A|E, 取行列式得到 |A|A*|=|A|n. 若|A|¹0, 則|A*|=|A|n-1; 若|A|=0, 由(1)知|A*|=0, 此時命題也成立. 因此|A*|=|A|n-1. 19. 設, AB=A+2B, 求
11、B. 解 由AB=A+2E可得(A-2E)B=A, 故 . 20. 設, 且AB+E=A2+B, 求B. 解 由AB+E=A2+B得 (A-E)B=A2-E, 即 (A-E)B=(A-E)(A+E). 因為, 所以(A-E)可逆, 從而 . 21. 設A=diag(1, -2, 1), A*BA=2BA-8E, 求B. 解 由A*BA=2BA-8E得 (A*-2E)BA=-8E, B=-8(A*-2E)-1A-1 =-8A(A*-2E)-1 =-8(AA*-2A)-1 =-8(|A|E-2A)-1 =-8(-2E-2A)-1 =4(E+A)-1 =4diag(2, -1, 2)-1 =2dia
12、g(1, -2, 1). 22. 已知矩陣A的伴隨陣, 且ABA-1=BA-1+3E, 求B. 解 由|A*|=|A|3=8, 得|A|=2. 由ABA-1=BA-1+3E得 AB=B+3A, B=3(A-E)-1A=3A(E-A-1)-1A . 23. 設P-1AP=L, 其中, , 求A11. 解 由P-1AP=L, 得A=PLP-1, 所以A11= A=PL11P-1. |P|=3, , , 而 , 故 . 24. 設AP=PL, 其中, , 求j(A)=A8(5E-6A+A2). 解 j(L)=L8(5E-6L+L2) =diag(1,1,58)diag(5,5,5)-diag(-6,6,30)+diag(1,1,25) =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). j(A)=Pj(L)P-1 . 25. 設矩陣A、B及A+B都可逆, 證明A-1+B-1也可逆, 并求其逆陣. 證明 因為 A-1(A+B)B-1=B-1+A-1=A-1+B-1, 而A-1(A+B)B-1是三個可逆矩陣的乘積, 所以A-1(A+B)B-1可逆, 即A-1+B-1可逆. (A-1+B-1)-1=A-1(A+B)B-1-1=B(A+B)-1A. 26. 計算. 解 設, , , , 則 , 而 , , 所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 潛水裝備的水下作業(yè)安全意識培養(yǎng)與提升考核試卷
- 舞蹈教育在兒童成長中的作用考核試卷
- 窗簾面料的環(huán)保染整技術考核試卷
- 四川水利職業(yè)技術學院《臨床檢驗儀器與技術》2023-2024學年第二學期期末試卷
- 山西省運城市萬榮縣2025年初三下學期第二次模擬考試化學試題文試卷含解析
- 山東省威海市文登區(qū)文登實驗、三里河中學2025屆中考化學試題模擬試卷(8)含解析
- 沈陽工業(yè)大學《現(xiàn)代地球物理學進展》2023-2024學年第二學期期末試卷
- 濰坊學院《大學寫作實踐課》2023-2024學年第二學期期末試卷
- 景德鎮(zhèn)市重點中學2024-2025學年初三考前熱身生物試題試卷含解析
- 天門職業(yè)學院《應用真菌學》2023-2024學年第二學期期末試卷
- 2025屆福建省多地市聯(lián)考高三下學期二模物理試題(原卷版+解析版)
- 2025年傳染病護理
- 2025年上半年池州市園林局招考專業(yè)技術人員易考易錯模擬試題(共500題)試卷后附參考答案
- 武漢市2025屆高中畢業(yè)生四月調(diào)研考試 試卷與解析
- 2025北京各區(qū)高三一模數(shù)學分類匯編解析 答案
- 第18課《井岡翠竹》 課件
- 質(zhì)量信譽考核自評報告3篇
- 胃腸炎護理教學查房
- 護士站管理制度
- 藥物服用指導與患者教育試題及答案
- (四調(diào))武漢市2025屆高中畢業(yè)生四月調(diào)研考試 英語試卷
評論
0/150
提交評論