初二下學(xué)習(xí)數(shù)學(xué)知識點(diǎn)匯總_第1頁
初二下學(xué)習(xí)數(shù)學(xué)知識點(diǎn)匯總_第2頁
初二下學(xué)習(xí)數(shù)學(xué)知識點(diǎn)匯總_第3頁
初二下學(xué)習(xí)數(shù)學(xué)知識點(diǎn)匯總_第4頁
初二下學(xué)習(xí)數(shù)學(xué)知識點(diǎn)匯總_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、八年級數(shù)學(xué)(下冊)知識點(diǎn)總結(jié)第十六章 二次根式【知識回顧】1.二次根式:式子 ( 0)叫做二次根式。2.最簡二次根式:必須同時滿足下列條件:被開方數(shù)中不含開方開的盡的因數(shù)或因式; 被開方數(shù)中不含分母; 分母中不含根式。3.同類二次根式:二次根式化成最簡二次根式后,若被開方數(shù)相同,則這幾個二次根式就是同類二次根式。4.二次根式的性質(zhì):(1)( )2= ( 0); (2) 5.二次根式的運(yùn)算: (1)因式的外移和內(nèi)移:如果被開方數(shù)中有的因式能夠開得盡方,那么,就可以用它的算術(shù)根代替而移到根號外面;如果被開方數(shù)是代數(shù)和的形式,那么先解因式,變形為積的形式,再移因式到根號外面,反之也可以將根號外面的正

2、因式平方后移到根號里面(2)二次根式的加減法:先把二次根式化成最簡二次根式再合并同類二次根式(3)二次根式的乘除法:二次根式相乘(除),將被開方數(shù)相乘(除),所得的積(商)仍作積(商)的被開方數(shù)并將運(yùn)算結(jié)果化為最簡二次根式 = (a0,b0); (b0,a>0)(4)有理數(shù)的加法交換律、結(jié)合律,乘法交換律及結(jié)合律,乘法對加法的分配律以及多項(xiàng)式的乘法公式,都適用于二次根式的運(yùn)算第十七章 勾股定理 1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2b2=c2。2.勾股定理逆定理:如果三角形三邊長a,b,c滿足a2b2=c2。,那么這個三角形是直角三角形。 3.經(jīng)過證明

3、被確認(rèn)正確的命題叫做定理。 我們把題設(shè)、結(jié)論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理) 4.直角三角形的性質(zhì) (1)、直角三角形的兩個銳角互余??杀硎救缦拢篊=90°A+B=90° (2)、在直角三角形中,30°角所對的直角邊等于斜邊的一半。A=30° 可表示如下: BC=ABC=90° (3)、直角三角形斜邊上的中線等于斜邊的一半ACB=90° 可表示如下: CD=AB=BD=AD D為AB的中點(diǎn)5、攝影定理在直角三角形中,斜邊上的高線是兩直角邊在斜邊上的攝影

4、的比例中項(xiàng),每條直角邊是它們在斜邊上的攝影和斜邊的比例中項(xiàng)ACB=90°CDAB 6、常用關(guān)系式由三角形面積公式可得:ABCD=ACBC7、直角三角形的判定 1、有一個角是直角的三角形是直角三角形。 2、如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。 3、勾股定理的逆定理:如果三角形的三邊長a,b,c有關(guān)系,那么這個三角形是直角三角形。8、命題、定理、證明 1、命題的概念判斷一件事情的語句,叫做命題。理解:命題的定義包括兩層含義:(1)命題必須是個完整的句子;(2)這個句子必須對某件事情做出判斷。2、命題的分類(按正確、錯誤與否分) 真命題(正確的命題)命題 假命

5、題(錯誤的命題)所謂正確的命題就是:如果題設(shè)成立,那么結(jié)論一定成立的命題。所謂錯誤的命題就是:如果題設(shè)成立,不能證明結(jié)論總是成立的命題。3、公理人們在長期實(shí)踐中總結(jié)出來的得到人們公認(rèn)的真命題,叫做公理。4、定理用推理的方法判斷為正確的命題叫做定理。5、證明判斷一個命題的正確性的推理過程叫做證明。6、證明的一般步驟(1)根據(jù)題意,畫出圖形。(2)根據(jù)題設(shè)、結(jié)論、結(jié)合圖形,寫出已知、求證。(3)經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。9、三角形中的中位線連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。(1)三角形共有三條中位線,并且它們又重新構(gòu)成一個新的三角形。(2)要會區(qū)別三角形中線與中位

6、線。三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。三角形中位線定理的作用:位置關(guān)系:可以證明兩條直線平行。數(shù)量關(guān)系:可以證明線段的倍分關(guān)系。常用結(jié)論:任一個三角形都有三條中位線,由此有:結(jié)論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。結(jié)論2:三條中位線將原三角形分割成四個全等的三角形。結(jié)論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。結(jié)論4:三角形一條中線和與它相交的中位線互相平分。結(jié)論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。10數(shù)學(xué)口訣. 平方差公式:平方差公式有兩項(xiàng),符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。 完全

7、平方公式:完全平方有三項(xiàng),首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項(xiàng)符號隨中央。第十八章 四邊形四邊形 1四邊形的內(nèi)角和與外角和定理:(1)四邊形的內(nèi)角和等于360°;(2)四邊形的外角和等于360°.2多邊形的內(nèi)角和與外角和定理:(1)n邊形的內(nèi)角和等于(n-2)180°;(2)任意多邊形的外角和等于360°.3平行四邊形的性質(zhì):因?yàn)锳BCD是平行四邊形Þ4.平行四邊形的判定:.5.矩形的性質(zhì):因?yàn)锳BCD是矩形Þ6. 矩形的判定:Þ四邊形ABCD是矩形.7菱形的性質(zhì):因?yàn)锳BCD是菱

8、形Þ8菱形的判定:Þ四邊形四邊形ABCD是菱形.9正方形的性質(zhì):因?yàn)锳BCD是正方形Þ(1) (2)(3) 10正方形的判定:Þ四邊形ABCD是正方形.(3)ABCD是矩形又AD=AB 四邊形ABCD是正方形11等腰梯形的性質(zhì):因?yàn)锳BCD是等腰梯形Þ12等腰梯形的判定:Þ四邊形ABCD是等腰梯形(3)ABCD是梯形且ADBCAC=BDABCD四邊形是等腰梯形14三角形中位線定理:三角形的中位線平行第三邊,并且等于它的一半.15梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半.一 基本概念:四邊形,四邊形的內(nèi)角,四邊形的外

9、角,多邊形,平行線間的距離,平行四邊形,矩形,菱形,正方形,中心對稱,中心對稱圖形,梯形,等腰梯形,直角梯形,三角形中位線,梯形中位線.二 定理:中心對稱的有關(guān)定理1關(guān)于中心對稱的兩個圖形是全等形.2關(guān)于中心對稱的兩個圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分.3如果兩個圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個圖形關(guān)于這一點(diǎn)對稱.三 公式: 1S菱形 =ab=ch.(a、b為菱形的對角線 ,c為菱形的邊長 ,h為c邊上的高)2S平行四邊形 =ah. a為平行四邊形的邊,h為a上的高)3S梯形 =(a+b)h=Lh.(a、b為梯形的底,h為梯形的高,L為梯形的中位線)四

10、 常識:1若n是多邊形的邊數(shù),則對角線條數(shù)公式是:.2規(guī)則圖形折疊一般“出一對全等,一對相似”.3如圖:平行四邊形、矩形、菱形、正方形的從屬關(guān)系.4常見圖形中,僅是軸對稱圖形的有:角、等腰三角形、等邊三角形、正奇邊形、等腰梯形 ;僅是中心對稱圖形的有:平行四邊形 ;是雙對稱圖形的有:線段、矩形、菱形、正方形、正偶邊形、圓 .注意:線段有兩條對稱軸.第十九章一次函數(shù)一.常量、變量: 在一個變化過程中,數(shù)值發(fā)生變化的量叫做 變量 ;數(shù)值始終不變的量叫做 常量 。二、函數(shù)的概念:函數(shù)的定義:一般的,在一個變化過程中,如果有兩個變量x與y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應(yīng),那么我

11、們就說x是自變量,y是x的函數(shù)三、函數(shù)中自變量取值范圍的求法:(1)用整式表示的函數(shù),自變量的取值范圍是全體實(shí)數(shù)。(2)用分式表示的函數(shù),自變量的取值范圍是使分母不為0的一切實(shí)數(shù)。(3)用寄次根式表示的函數(shù),自變量的取值范圍是全體實(shí)數(shù)。 用偶次根式表示的函數(shù),自變量的取值范圍是使被開方數(shù)為非負(fù)數(shù)的一 切實(shí)數(shù)。(4)若解析式由上述幾種形式綜合而成,須先求出各部分的取值范圍,然后再求其公共范圍,即為自變量的取值范圍。(5)對于與實(shí)際問題有關(guān)系的,自變量的取值范圍應(yīng)使實(shí)際問題有意義。四、 函數(shù)圖象的定義:一般的,對于一個函數(shù),如果把自變量與函數(shù)的每對對應(yīng)值分別作為點(diǎn)的橫、縱坐標(biāo),那么在坐標(biāo)平面內(nèi)由這

12、些點(diǎn)組成的圖形,就是這個函數(shù)的圖象五、用描點(diǎn)法畫函數(shù)的圖象的一般步驟1、列表(表中給出一些自變量的值及其對應(yīng)的函數(shù)值。)注意:列表時自變量由小到大,相差一樣,有時需對稱。2、描點(diǎn):(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對應(yīng)的各點(diǎn)。3、連線:(按照橫坐標(biāo)由小到大的順序把所描的各點(diǎn)用平滑的曲線連接起來)。六、函數(shù)有三種表示形式:(1)列表法 (2)圖像法 (3)解析式法七、正比例函數(shù)與一次函數(shù)的概念:一般地,形如y=kx(k為常數(shù),且k0)的函數(shù)叫做正比例函數(shù).其中k叫做比例系數(shù)。 一般地,形如y=kx+b (k,b為常數(shù),且k0)的函數(shù)叫做一次函數(shù). 當(dāng)b

13、=0 時,y=kx+b 即為 y=kx,所以正比例函數(shù),是一次函數(shù)的特例.八、正比例函數(shù)的圖象與性質(zhì):(1)圖象:正比例函數(shù)y= kx (k 是常數(shù),k0) 的圖象是經(jīng)過原點(diǎn)的一條直線,我們稱它為直線y= kx 。 (2)性質(zhì):當(dāng)k>0時,直線y= kx經(jīng)過第三,一象限,從左向右上升,即隨著x的增大y也增大;當(dāng)k<0時,直線y= kx經(jīng)過二,四象限,從左向右下降,即隨著 x的增大y反而減小。九、求函數(shù)解析式的方法:待定系數(shù)法:先設(shè)出函數(shù)解析式,再根據(jù)條件確定解析式中未知的系數(shù),從而具體寫出這個式子的方法。1. 一次函數(shù)與一元一次方程:從“數(shù)”的角度看x為何值時函數(shù)y= ax+b的值

14、為02. 求ax+b=0(a, b是常數(shù),a0)的解,從“形”的角度看,求直線y= ax+b與 x 軸交點(diǎn)的橫坐標(biāo)3. 一次函數(shù)與一元一次不等式:解不等式ax+b0(a,b是常數(shù),a0) 從“數(shù)”的角度看,x為何值時函數(shù)y= ax+b的值大于04.解不等式ax+b0(a,b是常數(shù),a0) 從“形”的角度看,求直線y= ax+b在 x 軸上方的部分(射線)所對應(yīng)的的橫坐標(biāo)的取值范圍十、一次函數(shù)與正比例函數(shù)的圖象與性質(zhì)一次函數(shù) 概念如果y=kx+b(k、b是常數(shù),k0),那么y叫x的一次函數(shù).當(dāng)b=0時,一次函數(shù)y=kx(k0)也叫正比例函數(shù). 圖像一條直線性質(zhì)k0時,y隨x的增大(或減小)而增大

15、(或減小);k0時,y隨x的增大(或減小)而減小(或增大). 直線y=kx+b(k0)的位置與k、b符號之間的關(guān)系.(1)k>0,b0圖像經(jīng)過一、二、三象限;(2)k>0,b0圖像經(jīng)過一、三、四象限;(3)k>0,b0 圖像經(jīng)過一、三象限;(4)k0,b0圖像經(jīng)過一、二、四象限;(5)k0,b0圖像經(jīng)過二、三、四象限;(6)k0,b0圖像經(jīng)過二、四象限。一次函數(shù)表達(dá)式的確定求一次函數(shù)y=kx+b(k、b是常數(shù),k0)時,需要由兩個點(diǎn)來確定;求正比例函數(shù)y=kx(k0)時,只需一個點(diǎn)即可. 第二十章數(shù)據(jù)的分析數(shù)據(jù)的代表:平均數(shù)、眾數(shù)、中位數(shù)、極差、方差1解統(tǒng)計學(xué)的幾個基本概念&

16、#160;   總體、個體、樣本、樣本容量是統(tǒng)計學(xué)中特有的規(guī)定,準(zhǔn)確把握教材,明確所考查的對象是解決有關(guān)總體、個體、樣本、樣本容量問題的關(guān)鍵。  一:5個基本統(tǒng)計量(平均數(shù)、眾數(shù)、中位數(shù)、極差、方差)的數(shù)學(xué)內(nèi)涵:平均數(shù):把一組數(shù)據(jù)的總和除以這組數(shù)據(jù)的個數(shù)所得的商。平均數(shù)反映一組數(shù)據(jù)的平均水平,平均數(shù)分為算術(shù)平均數(shù)和加權(quán)平均數(shù)。 眾數(shù):在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)(有時不止一個),叫做這組數(shù)據(jù)的眾數(shù)中位數(shù):將一組數(shù)據(jù)按大小順序排列,把處在最中間的一個數(shù)(或兩個數(shù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)極差:是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差。巧計方法,極差=最大值-最小值。方差:各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),記作s2 .巧計方法:方差是偏差的平方的平均數(shù)。 標(biāo)準(zhǔn)差:方差的算術(shù)平方根,記作s 。&#

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論