




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上橢圓的基本知識 1橢圓的定義:把平面內(nèi)與兩個定點(diǎn)的距離之和等于常數(shù)(大于)的點(diǎn)的軌跡叫做橢圓.這兩個定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫做焦距(設(shè)為2c) . 2.橢圓的標(biāo)準(zhǔn)方程:(0) (0)焦點(diǎn)在坐標(biāo)軸上的橢圓標(biāo)準(zhǔn)方程有兩種情形,為了計(jì)算簡便,可設(shè)方程為mx2+ny2=1(m>0,n>0)不必考慮焦點(diǎn)位置,求出方程3.求軌跡方程的方法: 定義法、待定系數(shù)法、相關(guān)點(diǎn)法、直接法解: (相關(guān)點(diǎn)法)設(shè)點(diǎn)M(x, y), 點(diǎn)P(x0, y0), 則xx0, y 得x0x, y02y.x02y024, 得 x2(2y)24, 即所以點(diǎn)M的軌跡是一個橢圓. 4.范圍.
2、 x2a2,y2b2,|x|a,|y|b橢圓位于直線x±a和y±b圍成的矩形里5.橢圓的對稱性橢圓是關(guān)于y軸、x軸、原點(diǎn)都是對稱的坐標(biāo)軸是橢圓的對稱軸原點(diǎn)是橢圓的對稱中心橢圓的對稱中心叫做橢圓的中心6.頂點(diǎn) 只須令x0,得y±b,點(diǎn)B1(0,b)、B2(0, b)是橢圓和y軸的兩個交點(diǎn);令y0,得x±a,點(diǎn)A1(a,0)、A2(a,0)是橢圓和x軸的兩個交點(diǎn)橢圓有四個頂點(diǎn):A1(a, 0)、A2(a, 0)、B1(0, b)、B2(0, b)橢圓和它的對稱軸的四個交點(diǎn)叫橢圓的頂點(diǎn)線段A1A2、B1B2分別叫做橢圓的長軸和短軸. 長軸的長等于2a. 短軸的
3、長等于2b.a叫做橢圓的長半軸長b叫做橢圓的短半軸長|B1F1|B1F2|B2F1|B2F2|a在RtOB2F2中,|OF2|2|B2F2|2|OB2|2,即c2a2b27.橢圓的幾何性質(zhì):橢圓的幾何性質(zhì)可分為兩類:一類是與坐標(biāo)系有關(guān)的性質(zhì),如頂點(diǎn)、焦點(diǎn)、中心坐標(biāo);一類是與坐標(biāo)系無關(guān)的本身固有性質(zhì),如長、短軸長、焦距、離心率對于第一類性質(zhì),只要的有關(guān)性質(zhì)中橫坐標(biāo)x和縱坐標(biāo)y互換,就可以得出的有關(guān)性質(zhì)。總結(jié)如下:幾點(diǎn)說明:(1)長軸:線段,長為;短軸:線段,長為;焦點(diǎn)在長軸上。(2)對于離心率e,因?yàn)閍>c>0,所以0<e<1,離心率反映了橢圓的扁平程度。由于,所以越趨近
4、于1,越趨近于,橢圓越扁平;越趨近于0,越趨近于,橢圓越圓。(3)觀察下圖,所以,所以橢圓的離心率e = cosOF2B28.直線與橢圓: 直線:(、不同時為0) 橢圓:那么如何來判斷直線和橢圓的位置關(guān)系呢?將兩方程聯(lián)立得方程組,通過方程組的解的個數(shù)來判斷直線和橢圓交點(diǎn)的情況。方法如下: 消去得到關(guān)于的一元二次方程,化簡后形式如下, (1)當(dāng)時,方程組有兩組解,故直線與橢圓有兩個交點(diǎn); (2)當(dāng)時,方程組有一解,直線與橢圓有一個公共點(diǎn)(相切); (3)當(dāng)時,方程組無解,直線和橢圓沒有公共點(diǎn)。 注:當(dāng)直線與橢圓有兩個公共點(diǎn)時,設(shè)其坐標(biāo)為,那么線段的長度(即弦長)為,設(shè)直線的斜率為,可得:,然后我
5、們可通過求出方程的根或用韋達(dá)定理求出。橢圓典型例題例1 已知橢圓的一個焦點(diǎn)為(0,2)求的值分析:把橢圓的方程化為標(biāo)準(zhǔn)方程,由,根據(jù)關(guān)系可求出的值解:方程變形為因?yàn)榻裹c(diǎn)在軸上,所以,解得又,所以,適合故例2 已知橢圓的中心在原點(diǎn),且經(jīng)過點(diǎn),求橢圓的標(biāo)準(zhǔn)方程分析:因橢圓的中心在原點(diǎn),故其標(biāo)準(zhǔn)方程有兩種情況根據(jù)題設(shè)條件,運(yùn)用待定系數(shù)法,求出參數(shù)和(或和)的值,即可求得橢圓的標(biāo)準(zhǔn)方程解:當(dāng)焦點(diǎn)在軸上時,設(shè)其方程為由橢圓過點(diǎn),知又,代入得,故橢圓的方程為當(dāng)焦點(diǎn)在軸上時,設(shè)其方程為由橢圓過點(diǎn),知又,聯(lián)立解得,故橢圓的方程為例3 的底邊,和兩邊上中線長之和為30,求此三角形重心的軌跡和頂點(diǎn)的軌跡分析:(1
6、)由已知可得,再利用橢圓定義求解(2)由的軌跡方程、坐標(biāo)的關(guān)系,利用代入法求的軌跡方程解: (1)以所在的直線為軸,中點(diǎn)為原點(diǎn)建立直角坐標(biāo)系設(shè)點(diǎn)坐標(biāo)為,由,知點(diǎn)的軌跡是以、為焦點(diǎn)的橢圓,且除去軸上兩點(diǎn)因,有,故其方程為(2)設(shè),則 由題意有代入,得的軌跡方程為,其軌跡是橢圓(除去軸上兩點(diǎn))例4 已知點(diǎn)在以坐標(biāo)軸為對稱軸的橢圓上,點(diǎn)到兩焦點(diǎn)的距離分別為和,過點(diǎn)作焦點(diǎn)所在軸的垂線,它恰好過橢圓的一個焦點(diǎn),求橢圓方程解:設(shè)兩焦點(diǎn)為、,且,從橢圓定義知即從知垂直焦點(diǎn)所在的對稱軸,所以在中,可求出,從而所求橢圓方程為或例5 已知橢圓方程,長軸端點(diǎn)為,焦點(diǎn)為,是橢圓上一點(diǎn),求:的面積(用、表示)分析:求面
7、積要結(jié)合余弦定理及定義求角的兩鄰邊,從而利用求面積解:如圖,設(shè),由橢圓的對稱性,不妨設(shè),由橢圓的對稱性,不妨設(shè)在第一象限由余弦定理知: ·由橢圓定義知: ,則得 故 例6 已知動圓過定點(diǎn),且在定圓的內(nèi)部與其相內(nèi)切,求動圓圓心的軌跡方程分析:關(guān)鍵是根據(jù)題意,列出點(diǎn)P滿足的關(guān)系式解:如圖所示,設(shè)動圓和定圓內(nèi)切于點(diǎn)動點(diǎn)到兩定點(diǎn),即定點(diǎn)和定圓圓心距離之和恰好等于定圓半徑,即點(diǎn)的軌跡是以,為兩焦點(diǎn),半長軸為4,半短軸長為的橢圓的方程:說明:本題是先根據(jù)橢圓的定義,判定軌跡是橢圓,然后根據(jù)橢圓的標(biāo)準(zhǔn)方程,求軌跡的方程這是求軌跡方程的一種重要思想方法例7 已知橢圓(1)求過點(diǎn)且被平分的弦所在直線的
8、方程;(2)求斜率為2的平行弦的中點(diǎn)軌跡方程;(3)過引橢圓的割線,求截得的弦的中點(diǎn)的軌跡方程;(4)橢圓上有兩點(diǎn)、,為原點(diǎn),且有直線、斜率滿足,求線段中點(diǎn)的軌跡方程 分析:此題中四問都跟弦中點(diǎn)有關(guān),因此可考慮設(shè)弦端坐標(biāo)的方法解:設(shè)弦兩端點(diǎn)分別為,線段的中點(diǎn),則得由題意知,則上式兩端同除以,有,將代入得(1)將,代入,得,故所求直線方程為: 將代入橢圓方程得,符合題意,為所求(2)將代入得所求軌跡方程為: (橢圓內(nèi)部分)(3)將代入得所求軌跡方程為: (橢圓內(nèi)部分)(4)由得 : , , 將平方并整理得, , , 將代入得: , 再將代入式得: , 即 此即為所求軌跡方程當(dāng)然,此題除了設(shè)弦端坐
9、標(biāo)的方法,還可用其它方法解決例8 已知橢圓及直線(1)當(dāng)為何值時,直線與橢圓有公共點(diǎn)?(2)若直線被橢圓截得的弦長為,求直線的方程解:(1)把直線方程代入橢圓方程得 ,即,解得(2)設(shè)直線與橢圓的兩個交點(diǎn)的橫坐標(biāo)為,由(1)得,根據(jù)弦長公式得 :解得方程為說明:處理有關(guān)直線與橢圓的位置關(guān)系問題及有關(guān)弦長問題,采用的方法與處理直線和圓的有所區(qū)別這里解決直線與橢圓的交點(diǎn)問題,一般考慮判別式;解決弦長問題,一般應(yīng)用弦長公式用弦長公式,若能合理運(yùn)用韋達(dá)定理(即根與系數(shù)的關(guān)系),可大大簡化運(yùn)算過程例9 以橢圓的焦點(diǎn)為焦點(diǎn),過直線上一點(diǎn)作橢圓,要使所作橢圓的長軸最短,點(diǎn)應(yīng)在何處?并求出此時的橢圓方程分析:
10、橢圓的焦點(diǎn)容易求出,按照橢圓的定義,本題實(shí)際上就是要在已知直線上找一點(diǎn),使該點(diǎn)到直線同側(cè)的兩已知點(diǎn)(即兩焦點(diǎn))的距離之和最小,只須利用對稱就可解決解:如圖所示,橢圓的焦點(diǎn)為,點(diǎn)關(guān)于直線的對稱點(diǎn)的坐標(biāo)為(9,6),直線的方程為解方程組得交點(diǎn)的坐標(biāo)為(5,4)此時最小所求橢圓的長軸:,又,因此,所求橢圓的方程為例10 已知方程表示橢圓,求的取值范圍解:由得,且滿足條件的的取值范圍是,且說明:本題易出現(xiàn)如下錯解:由得,故的取值范圍是出錯的原因是沒有注意橢圓的標(biāo)準(zhǔn)方程中這個條件,當(dāng)時,并不表示橢圓例11 已知表示焦點(diǎn)在軸上的橢圓,求的取值范圍分析:依據(jù)已知條件確定的三角函數(shù)的大小關(guān)系再根據(jù)三角函數(shù)的單
11、調(diào)性,求出的取值范圍解:方程可化為因?yàn)榻裹c(diǎn)在軸上,所以因此且從而說明:(1)由橢圓的標(biāo)準(zhǔn)方程知,這是容易忽視的地方(2)由焦點(diǎn)在軸上,知, (3)求的取值范圍時,應(yīng)注意題目中的條件例12求中心在原點(diǎn),對稱軸為坐標(biāo)軸,且經(jīng)過和兩點(diǎn)的橢圓方程分析:由題設(shè)條件焦點(diǎn)在哪個軸上不明確,橢圓標(biāo)準(zhǔn)方程有兩種情形,為了計(jì)算簡便起見,可設(shè)其方程為(,),且不必去考慮焦點(diǎn)在哪個坐標(biāo)軸上,直接可求出方程解:設(shè)所求橢圓方程為(,)由和兩點(diǎn)在橢圓上可得即所以,故所求的橢圓方程為例13 已知長軸為12,短軸長為6,焦點(diǎn)在軸上的橢圓,過它對的左焦點(diǎn)作傾斜解為的直線交橢圓于,兩點(diǎn),求弦的長分析:可以利用弦長公式求得,也可以利
12、用橢圓定義及余弦定理,還可以利用焦點(diǎn)半徑來求解:(法1)利用直線與橢圓相交的弦長公式求解因?yàn)?,所以因?yàn)榻裹c(diǎn)在軸上,所以橢圓方程為,左焦點(diǎn),從而直線方程為由直線方程與橢圓方程聯(lián)立得:設(shè),為方程兩根,所以, 從而 (法2)利用橢圓的定義及余弦定理求解由題意可知橢圓方程為,設(shè),則,在中,即;所以同理在中,用余弦定理得,所以 (法3)利用焦半徑求解先根據(jù)直線與橢圓聯(lián)立的方程求出方程的兩根,它們分別是,的橫坐標(biāo)再根據(jù)焦半徑,從而求出例14橢圓上的點(diǎn)到焦點(diǎn)的距離為2,為的中點(diǎn),則(為坐標(biāo)原點(diǎn))的值為A4B2 C8 D解:如圖所示,設(shè)橢圓的另一個焦點(diǎn)為,由橢圓第一定義得,所以,又因?yàn)闉榈闹形痪€,所以,故答案
13、為A說明:(1)橢圓定義:平面內(nèi)與兩定點(diǎn)的距離之和等于常數(shù)(大于)的點(diǎn)的軌跡叫做橢圓(2)橢圓上的點(diǎn)必定適合橢圓的這一定義,即,利用這個等式可以解決橢圓上的點(diǎn)與焦點(diǎn)的有關(guān)距離例15 已知橢圓,試確定的取值范圍,使得對于直線,橢圓上有不同的兩點(diǎn)關(guān)于該直線對稱分析:若設(shè)橢圓上,兩點(diǎn)關(guān)于直線對稱,則已知條件等價于:(1)直線;(2)弦的中點(diǎn)在上利用上述條件建立的不等式即可求得的取值范圍解:(法1)設(shè)橢圓上,兩點(diǎn)關(guān)于直線對稱,直線與交于點(diǎn)的斜率,設(shè)直線的方程為由方程組消去得。于是,即點(diǎn)的坐標(biāo)為點(diǎn)在直線上,解得將式代入式得,是橢圓上的兩點(diǎn),解得(法2)同解法1得出,即點(diǎn)坐標(biāo)為,為橢圓上的兩點(diǎn),點(diǎn)在橢圓的
14、內(nèi)部,解得(法3)設(shè),是橢圓上關(guān)于對稱的兩點(diǎn),直線與的交點(diǎn)的坐標(biāo)為,在橢圓上,兩式相減得,即又直線,即。又點(diǎn)在直線上,。由,得點(diǎn)的坐標(biāo)為以下同解法2.說明:涉及橢圓上兩點(diǎn),關(guān)于直線恒對稱,求有關(guān)參數(shù)的取值范圍問題,可以采用列參數(shù)滿足的不等式:(1)利用直線與橢圓恒有兩個交點(diǎn),通過直線方程與橢圓方程組成的方程組,消元后得到的一元二次方程的判別式,建立參數(shù)方程(2)利用弦的中點(diǎn)在橢圓內(nèi)部,滿足,將,利用參數(shù)表示,建立參數(shù)不等式例17 在面積為1的中,建立適當(dāng)?shù)淖鴺?biāo)系,求出以、為焦點(diǎn)且過點(diǎn)的橢圓方程解:以的中點(diǎn)為原點(diǎn),所在直線為軸建立直角坐標(biāo)系,設(shè)則即得所求橢圓方程為例18 已知是直線被橢圓所截得的線段的中點(diǎn),求直線的方程分析:本題考查直線與橢圓的位置關(guān)系問題通常將直線方程與橢圓方程聯(lián)立消去(或),得到關(guān)于(或)的一元二次方程,再由根與系數(shù)的關(guān)系,直接求出,(或,)的值代入計(jì)算即得并不需要求出直線與橢圓的交點(diǎn)坐標(biāo),這種“設(shè)而不求”的方法,在解析幾何中是經(jīng)常采用的解:方法一:設(shè)所求直線方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小工廠獎金管理制度
- 福鼎街道垃圾管理制度
- 汽車零部件行業(yè)供應(yīng)鏈全球化布局與區(qū)域協(xié)同研究報(bào)告
- 員工更衣室管理制度
- 反食品消費(fèi)管理制度
- 華僑城成本管理制度
- 員工溝通與管理制度
- 合同及資料管理制度
- 醫(yī)務(wù)部服務(wù)管理制度
- 主播培訓(xùn)規(guī)范管理制度
- 確認(rèn)收貨單-模板
- 吸入麻醉課件教學(xué)課件
- 人教版(2024新版)七年級上冊英語期中復(fù)習(xí)課件
- 金融行業(yè)安全生產(chǎn)責(zé)任管理
- 設(shè)備日常維護(hù)及保養(yǎng)培訓(xùn)
- 上海市市轄區(qū)(2024年-2025年小學(xué)五年級語文)統(tǒng)編版期末考試(下學(xué)期)試卷及答案
- 中國敏感性皮膚臨床診療指南(2024版)
- 一級建造師執(zhí)業(yè)資格考試大綱(2024年版)
- 科技成果轉(zhuǎn)化實(shí)施獎勵制度
- 近3年國網(wǎng)系統(tǒng)安全事故(事件)通報(bào)+各專業(yè)嚴(yán)重違章專項(xiàng)測試題附答案
- 肺孢子菌肺炎護(hù)理查房
評論
0/150
提交評論