第2課時利用二次函數(shù)解決橋梁建筑等問題_第1頁
第2課時利用二次函數(shù)解決橋梁建筑等問題_第2頁
第2課時利用二次函數(shù)解決橋梁建筑等問題_第3頁
第2課時利用二次函數(shù)解決橋梁建筑等問題_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、.第2課時利用二次函數(shù)解決橋梁建筑等問題知識要點(diǎn)根底練知識點(diǎn)1二次函數(shù)在橋梁中的應(yīng)用1.銅仁中考河北省趙縣的趙州橋的橋拱是近似的拋物線形,建立如下圖的平面直角坐標(biāo)系,其函數(shù)的表達(dá)式為y=-125x2,當(dāng)水面離橋拱頂?shù)母叨菵O是4 m時,這時水面寬度AB為CA.-20 mB.10 mC.20 mD.-10 m2.紹興中考如圖的一座拱橋,當(dāng)水面寬AB為12 m時,橋洞頂部離水面4 m.橋洞的拱形是拋物線,以程度方向為x軸,建立平面直角坐標(biāo)系,假設(shè)選取點(diǎn)A為坐標(biāo)原點(diǎn)時的拋物線表達(dá)式是y=-19x-62+4,那么選取點(diǎn)B為坐標(biāo)原點(diǎn)時的拋物線表達(dá)式是y=-19x+62+4. 知識點(diǎn)2二次函數(shù)在

2、涵洞隧道設(shè)計中的應(yīng)用3.一個涵洞呈拋物線形,它的截面如下圖,當(dāng)水面寬AB=1.6 m時,涵洞頂點(diǎn)與水面的間隔 為2.4 m,這時水面上方離水面1.5 m處的涵洞寬 365m. 4.如圖,隧道的橫截面由拋物線和長方形構(gòu)成,長方形的長是8 m,寬是2 m,拋物線的表達(dá)式為y=-14x2+4.1一輛貨運(yùn)車車高4 m,寬2 m,它能通過該隧道嗎?2假如該隧道內(nèi)設(shè)雙行道,中間遇車間隙為0.4 m,那么這輛貨運(yùn)車是否可以通過?解:1由題意,得當(dāng)x=1時,y=-14×12+4=3.75,3.75+2=5.75>4,能通過.2由題意,得當(dāng)x=2.2時,y=-14×

3、2.22+4=2.79,2.79+2=4.79>4,能通過.知識點(diǎn)3二次函數(shù)在其他建筑問題中的應(yīng)用5.如圖,某工廠大門是拋物線形水泥建筑,大門底部地面寬4米,頂部距地面的高度為4.4米,現(xiàn)有一輛滿載貨物的汽車欲通過大門,其裝貨寬度為2.4米,該車要想通過此門,裝貨后的高度應(yīng)小于BA.2.80米B.2.816米C.2.82米D.2.826米6.一個橫斷面是拋物線的渡槽如下圖,根據(jù)圖中所給的數(shù)據(jù)求出水面的寬度是23m. 綜合才能提升練7.如圖是拋物線形拱橋,當(dāng)水面離拱頂2 m時,水面寬4 m.水面下降2.5 m,水面寬度增加BA.1 mB.2 mC.3 mD.6 m8.某隧道橫截面

4、由拋物線與矩形的三邊組成,尺寸如下圖.以隧道橫截面拋物線的頂點(diǎn)為原點(diǎn),以拋物線的對稱軸為y軸,建立直角坐標(biāo)系,該拋物線對應(yīng)的函數(shù)表達(dá)式為y=-13x2. 9.某古城門橫截面由拋物線與矩形組成如圖,一輛高為h米,寬為2.4米的貨車能通過該古城門,那么h的最大值是5.64米. 10.廊橋是我國古老的文化遺產(chǎn),如下圖是某座拋物線形的廊橋示意圖,拋物線的表達(dá)式是y=-140x2+10,為保護(hù)廊橋上的通行平安,在拋物線上距水面AB高為8米的點(diǎn)E,F處要安裝兩盞警示燈,那么這兩盞燈的程度間隔 EF為85米. 11.如下圖,有一座拋物線形拱橋,橋下面的正常水位AB寬20 m,水

5、位上升3 m就到達(dá)戒備線CD,這時水面寬度為10 m.1在如圖的坐標(biāo)系中求拋物線的表達(dá)式;2假設(shè)洪水到來時,水位以每小時0.2 m的速度上升,從戒備線開場,再持續(xù)多少小時就會到達(dá)拱橋頂?解:1設(shè)所求拋物線的解析式為y=ax2,設(shè)D5,b,那么B10,b-3,25a=b,100a=b-3,解得a=-125,b=-1,y=-125x2.2b=-1,10.2=5小時,再持續(xù)5小時就會到達(dá)拱橋頂.12.某大學(xué)的校門是一拋物線形水泥建筑物,大門的地面寬度為8米,兩側(cè)距地面4米高處各有一個掛校名橫匾用的鐵環(huán),兩鐵環(huán)的程度間隔 為6米.求校門的高.準(zhǔn)確到0.1米,水泥建筑物厚度忽略不計解:如圖,以大門地面為

6、x軸,它的中垂線為y軸建立直角坐標(biāo)系,設(shè)拋物線的解析式為y=ax2+c,且拋物線過4,0,3,4兩點(diǎn),16a+c=0,9a+c=4,解得a=-47,c=647.解析式為y=-47x2+647,頂點(diǎn)坐標(biāo)為0,647.校門的高為6479.1米.探究拓展打破練13.青島中考如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標(biāo)系,拋物線可以用y=-16x2+bx+c表示,且拋物線上的點(diǎn)C到墻面OB的程度間隔 為3 m,到地面OA的間隔 為172 m.1求該拋物線的函數(shù)表達(dá)式,并計算出拱頂D到地面OA的間隔 ;2一輛貨運(yùn)汽車載一長方體集裝箱后高為6 m,寬為4 m,假如隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否平安通過?3在拋物線形拱壁上需要安裝兩排燈,使它們離地面的高度相等.假如燈離地面的高度不超過8 m,那么兩排燈的程度間隔 最小是多少?解:1由題意得點(diǎn)B,C的坐標(biāo)分別為0,4,3,172,c=4,-32+3b+c=172,解得b=2,c=4.該拋物線的函數(shù)表達(dá)式為y=-16x2+2x+4.y=-16x2+2x+4=-16x-62+10,拱頂D到地面OA的間隔 為10 m.2當(dāng)x=2時,y=-1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論