


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Topics of LecturesZengyong LiangI have two topics of Lectures to choose from:1. Exploration on The Proof of Goldbach ConjectureGoldbach conjecture was put forward by Goldbach in 1742. For more than a hundred years, no one can solve it.There are two main ways to solve Goldbach conjecture:1) "a +
2、 b" method:In 1920, brown of Norway proved "9 + 9".In 1966, Chen Jingrun of China proved "1 + 2. Since then, there has been no progress in the "a + b" method.2) Exception set method: it is proved that all even numbers except even number 2 can be expressed as the sum of
3、two prime numbers. So far, most scholars have not proved that the product formula is correct.Since I published the " " in 2009, after more than ten years of efforts, I finally found a comprehensive and perfect solution to Goldbach conjecture through a variety of proof methods from differen
4、t angles and means. This paper introduces the possibility of proving Goldbach conjecture by using the continued product formula.1) (n) The function formula can calculate the lower limit of prime number and prime pair number, which can be derived from the inclusion exclusion formula, Euler function a
5、nd the sieve of Eratosthenes. Namely(n)=n(1) .From (n) ,w (n) function formula for calculating the lower limit of the number of prime pairs can be derived. Asw(n)=(1)The number of prime pairs D (N) derived from the formula of continuous product function is greater than , which proves Goldbach conjec
6、ture. In addition, the geometric figure is used to represent the integer, and the mapping relationship between the internal angle of circle and sector and the number of integers is used to successfully prove the correctness of Goldbach conjecture This paper analyzes the error of the continued produc
7、t function formula, and how to correctly define and deal with it, so that it will only produce a small negative error, so as to ensure that the calculation result is the lower limit of prime number and prime pair number, and meet the requirements of proving Goldbach conjecture.2) The paper provides
8、computer data and trend chart to prove that the function formula is correct. At the same time, it can also provide a large amount of computer related data.3) The second Goldbach conjecture using geometry proves that using a circle to represent the integers in 0,2n, using the mapping relationship bet
9、ween the fan-shaped internal angle in the circle and the component of the number of integers, and successfully using morphological mathematics to prove the correctness of Goldbach conjecture and continuous product formula. The paper also proves that the generation mechanism of prime pairs is basical
10、ly the same from the generation mechanism of prime numbers, and reveals the essence of Goldbach conjecture.At the same time, it provides a new and useful mathematical morphological analysis method and theory to solve mathematical problems in number theory .4) This method solves the proof of infinite
11、 twin prime number at the same time.2. Solutions of Higher order Indefinite EquationsBach and Swinton Dale conjecture is one of the seven "Millennium Prize Problems" proposed by clay Institute of mathematics. This paper will introduce the solutions of various types of high-order indefinite
12、 equations to prove that such equations can also be solved by algebraic methods using structural mathematics.These include:1) a2 + b2= c2 general solution of indefinite equation.2) Proof of Fermat's last theorem: an + bn= cn indefinite equation has no integer solution.3) The proof of Bials conje
13、cture: ax + by= cz type equation has solutions with common factors.4) ax + by+ cy = du solution of multivariate indefinite equations. 5) kax + hby= jcz solution of coefficient band indefinite equations.Through the solution of the above equation, it is proved that the higher-order indefinite equation
14、 can be solved by algebraic coefficient and exponential matching method. Answers the questions raised by Behr and swenton Dale conjecture.The main papers participated in mathematics conferences and published include:In 2009, the paper "Any Even Number Not Less Than 6Can be Expressed as the Sum
15、or Difference of Two Primes" won the "scientific and Technological Innovation Award" of the second national folk science and technology development seminar.Zengyong Liang,( 2010), Any Even Number Not Less Than 6Can be Expressed as the Sum or Difference of Two Primes , Journal of intel
16、ligence. (July 2010)。Zengyong Liang,( 2013), A Practical New Method for Proving the Four-color Theorem, Journal of mathematics learning and Research. (Issue 19 of 2013)。Zengyong Liang,( 2013), No Odd Perfect Number, Journal of mathematics learning and Research. (March 2013).In 2013, he participated
17、in the 5th International Symposium on graph theory and combinatorial algorithm (Tongliao, Inner Mongolia) and made a speech on Hadwinger conjecture (Lectures).Zengyong Liang,( 2016),The Final Pproof of the Four-color Theorem , Journal of Examination Weekly (No. 84, 2016).Zengyong Liang,( 2018), Rigo
18、rous Proof of Goldbach's Conjecture ,Journal of science, technology and Economics (may 2018).In 2018, Rigorous Proof of Goldbach's Conjecture (Lectures)participated in the 2018 International Symposium on Discrete Mathematics and computer mathematics.Zengyong Liang,( 2018), Rigorous Proof of
19、Goldbach's Conjecture, Journal of Applied Mathematics and Physics , /journal/paperinformation.aspx?paperid=87140Zengyong Liang,( 2019),Proof of Beal Conjecture, Journal of Advances in Pure Mathematics, /journal/paperinformation.aspx?paperid=92539,https:/ww
20、/journal/paperinformation.aspx?paperid=92539Zengyong Liang,( 2019),Solutions of Indefinite Equations, Journal of Advances in Pure Mathematics, /journal/paperinformation.aspx?paperid=102965Zengyong Liang,( 2022), A New Method to Prove Goldbachs Conjecture ,Journal of Advances in Pure Mathematics, /journal/paperinformation.aspx?paperid=114833In addition, it can also provide several topics I have solved recently:1) Warings problem: using the modular method and structural mathematics, it is proved that g (2) = 4, g
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 南通大學(xué)杏林學(xué)院《中學(xué)美術(shù)課程標(biāo)準(zhǔn)與教材研究》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧師范大學(xué)《急診醫(yī)學(xué)Ⅰ》2023-2024學(xué)年第二學(xué)期期末試卷
- 漳州職業(yè)技術(shù)學(xué)院《化學(xué)課堂教學(xué)技能訓(xùn)練》2023-2024學(xué)年第二學(xué)期期末試卷
- 江西冶金職業(yè)技術(shù)學(xué)院《建筑快題設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 沈陽(yáng)理工大學(xué)《固體廢物處理與處置工程》2023-2024學(xué)年第二學(xué)期期末試卷
- 長(zhǎng)春光華學(xué)院《人工智能程序設(shè)計(jì)實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 茂名職業(yè)技術(shù)學(xué)院《臨床流行病學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 昌吉學(xué)院《武術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 天津外國(guó)語(yǔ)大學(xué)《機(jī)械制圖(二)》2023-2024學(xué)年第二學(xué)期期末試卷
- 浙大寧波理工學(xué)院《數(shù)字電視中心技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖北省鄂東南2025年春季高三年級(jí)五月模擬考物理試題及答案
- 游戲室電競(jìng)椅行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 2025年心理咨詢師考試試題及答案
- 初二下學(xué)期期中家長(zhǎng)會(huì)發(fā)言稿
- 福建省福州市2025年初中畢業(yè)班教學(xué)質(zhì)量檢測(cè)二生物學(xué)試卷(無答案)
- 山東省濟(jì)南市東南片區(qū)2024-2025學(xué)年七年級(jí)下學(xué)期期中考試英語(yǔ)試題
- 四川省資陽(yáng)市樂至縣2025年三年級(jí)數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析
- 2025-2030中國(guó)城市規(guī)劃行業(yè)深度分析及發(fā)展前景與發(fā)展戰(zhàn)略研究報(bào)告
- 2025年全國(guó)焊工作業(yè)人員職業(yè)技能理論考試練習(xí)題庫(kù)(900題)含答案
- 道岔區(qū)無砟軌道我國(guó)高速鐵路道岔區(qū)采用的無砟軌道主要有長(zhǎng)枕埋
- 《行政法與行政訴訟法》課件各章節(jié)內(nèi)容-第二十六章 行政賠償及訴訟
評(píng)論
0/150
提交評(píng)論