




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上因式分解序號公式記憶特征1x2+(a + b)x+ab = (x+a)(x+b) (十字相乘法)(1) 常數(shù)項兩數(shù)積(2) 一次項系數(shù)兩數(shù)和(3) 二次項系數(shù)為12a2-b2 = (a-b)(a+b)(平方差公式)3a2+2ab+b2 = (a+b)2 a2-2ab+b2 = (a-b)2(完全平方公式)4a2+b2+c2+2ab+2ac+2bc = (a+b+c)2(完全平方公式擴展)(1) 三數(shù)平方和(2) 兩兩積的2倍5a3+3a2b+3ab2+b3 = (a+b)3a3-3a2b-3ab2+b3 = (a-b)3(完全立方公式)對照完全平方公式相互加強記憶6a
2、3+b3 = (a+b)(a2-ab+b2)a3-b3 = (a-b)(a2+ab+b2)(1) 近似完全平方公式(2) 缺項之完全立方公式(a+b)(a+b)2-3ab=(a+b)3-3ab(a+b)(a-b)(a+b)2+3ab=(a-b)3+3ab(a+b)7a3+b3+c3-3abc = (a+b+c)(a2+b2+c2-ab-ac-bc)對照公式4相互加強記憶8an-bn = (a-b)(an-1+an-2b+an-3b2+abn-2+bn-1) n=整數(shù)(平方差公式擴展)(1) 短差長和;(2) a指數(shù)逐項遞減1;(3) b指數(shù)逐項遞增1;(4) 長式每項指數(shù)和恒等于 n-1。9a
3、n-bn = (a+b)(an-1-an-2b+an-3b2-+abn-2-bn-1) n=偶數(shù)(立方差公式擴展)(1) 短式變加長式加減相間;(2) a指數(shù)逐項遞減1;(3) b指數(shù)逐項遞增1;(4) 每項符號b指數(shù)決定偶加奇減。10an+bn = (a+b)(an-1-an-2b+an-3b2-+abn-2-bn-1) n=奇數(shù)(立方和公式擴展)對比公式9的異同運用公式法分解因式時,要根據(jù)多項式的特點,根據(jù)字母、系數(shù)、指數(shù)、符號等正確恰當?shù)剡x擇公式例1 分解因式:(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4; (2)x3-8y3-z3-6xyz;解 (1)原式=-2x
4、n-1yn(x4n-2x2ny2+y4)=-2xn-1yn(x2n)2-2x2ny2+(y2)2=-2xn-1yn(x2n-y2)2 =-2xn-1yn(xn-y)2(xn+y)2(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz)例2 分解因式:a3+b3+c3-3abc本題實際上就是用因式分解的方法證明前面給出的公式(6)分析 我們已經(jīng)知道公式(a+b)3=a3+3a2b+3ab2+b3的正確性,現(xiàn)將此公式變形為a3+b3=(a+b)3-3ab(a+b)這個式也是一個常用的公式,本題就借助于它來推導解 原式=(a
5、+b)3-3ab(a+b)+c3-3abc =(a+b)3+c3-3ab(a+b+c) =(a+b+c)(a+b)2-c(a+b)+c2-3ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-bc-ca)說明 公式(6)是一個應用極廣的公式,用它可以推出很多有用的結(jié)論,例如:我們將公式(6)變形為a3+b3+c3-3abc顯然,當a+b+c=0時,則a3+b3+c3=3abc;當a+b+c0時,則a3+b3+c3-3abc0,即a3+b3+c33abc,而且,當且僅當a=b=c時,等號成立如果令x=a30,y=b30,z=c30,則有等號成立的充要條件是x=y=z這也是一個常用的結(jié)論
6、變式練習1分解因式:x15+x14+x13+x2+x+1分析 這個多項式的特點是:有16項,從最高次項x15開始,x的次數(shù)順次遞減至0,由此想到應用公式an-bn來分解解 因為x16-1=(x-1)(x15+x14+x13+x2+x+1),所以說明 在本題的分解過程中,用到先乘以(x-1),再除以(x-1)的技巧,這一技巧在等式變形中很常用2拆項、添項法因式分解是多項式乘法的逆運算在多項式乘法運算時,整理、化簡常將幾個同類項合并為一項,或?qū)蓚€僅符號相反的同類項相互抵消為零在對某些多項式分解因式時,需要恢復那些被合并或相互抵消的項,即把多項式中的某一項拆成兩項或多項,或者在多項式中添上兩個僅符
7、合相反的項,前者稱為拆項,后者稱為添項拆項、添項的目的是使多項式能用分組分解法進行因式分解例3 分解因式:x3-9x+8分析 本題解法很多,這里只介紹運用拆項、添項法分解的幾種解法,注意一下拆項、添項的目的與技巧解法1 將常數(shù)項8拆成-1+9原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8)解法2 將一次項-9x拆成-x-8x原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8)解法3 將三次項x3拆成9x3-8x3原式=9x3-8x3-9x+8=(9x3-9x
8、)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8)解法4 添加兩項-x2+x2原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8)說明 由此題可以看出,用拆項、添項的方法分解因式時,要拆哪些項,添什么項并無一定之規(guī),主要的是要依靠對題目特點的觀察,靈活變換,因此拆項、添項法是因式分解諸方法中技巧性最強的一種變式練習1分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1解
9、 (1)將-3拆成-1-1-1原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3)(2)將4mn拆成2mn+2mn原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1)(3)將(x2-1)2拆成2(x2-1)2-(x2-1)2原式=(x+1)4+2(x2-1)2-(
10、x2-1)2+(x-1)4=(x+1)4+2(x+1)2(x-1)2+(x-1)4-(x2-1)2=(x+1)2+(x-1)22-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3)(4)添加兩項+ab-ab原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)b(a+b)+1+(ab+b2+1)=a(a-b)+1(ab+b2+1)=(a2-ab+1)(b2+ab+1)說明 (4)是一道較難的題目,由于分解后的因式結(jié)構(gòu)較復雜,所以不易想到添加+ab
11、-ab,而且添加項后分成的三項組又無公因式,而是先將前兩組分解,再與第三組結(jié)合,找到公因式這道題目使我們體會到拆項、添項法的極強技巧所在,同學們需多做練習,積累經(jīng)驗3換元法換元法指的是將一個較復雜的代數(shù)式中的某一部分看作一個整體,并用一個新的字母替代這個整體來運算,從而使運算過程簡明清晰例4 分解因式:(x2+x+1)(x2+x+2)-12分析 將原式展開,是關(guān)于x的四次多項式,分解因式較困難我們不妨將x2+x看作一個整體,并用字母y來替代,于是原題轉(zhuǎn)化為關(guān)于y的二次三項式的因式分解問題了解 設(shè)x2+x=y,則原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x
12、-2)(x2+x+5)=(x-1)(x+2)(x2+x+5)說明 本題也可將x2+x+1看作一個整體,比如今x2+x+1=u,一樣可以得到同樣的結(jié)果,有興趣的同學不妨試一試例5 分解因式:(x2+3x+2)(4x2+8x+3)-90分析 先將兩個括號內(nèi)的多項式分解因式,然后再重新組合解 原式=(x+1)(x+2)(2x+1)(2x+3)-90 =(x+1)(2x+3)(x+2)(2x+1)-90 =(2x2+5x+3)(2x2+5x+2)-90令y=2x2+5x+2,則原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+
13、12)(2x+7)(x-1)說明 對多項式適當?shù)暮愕茸冃问俏覀冋业叫略?y)的基礎(chǔ)變式練習1.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2解 設(shè)x2+4x+8=y,則原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8)說明 由本題可知,用換元法分解因式時,不必將原式中的元都用新元代換,根據(jù)題目需要,引入必要的新元,原式中的變元和新變元可以一起變形,換元法的本質(zhì)是簡化多項式1雙十字相乘法分解二次三項式時,我們常用十字相乘法對于某些二元二次六項式(ax2+bxy+cy2+dx+ey+f),我們也可以用十字
14、相乘法分解因式例如,分解因式2x2-7xy-22y2-5x+35y-3我們將上式按x降冪排列,并把y當作常數(shù),于是上式可變形為2x2-(5+7y)x-(22y2-35y+3),可以看作是關(guān)于x的二次三項式對于常數(shù)項而言,它是關(guān)于y的二次三項式,也可以用十字相乘法,分解為即:-22y2+35y-3=(2y-3)(-11y+1)再利用十字相乘法對關(guān)于x的二次三項式分解所以,原式=x+(2y-3)2x+(-11y+1) =(x+2y-3)(2x-11y+1)上述因式分解的過程,實施了兩次十字相乘法如果把這兩個步驟中的十字相乘圖合并在一起,可得到下圖:它表示的是下面三個關(guān)系式:(x+2y)(2x-11
15、y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3這就是所謂的雙十字相乘法用雙十字相乘法對多項式ax2+bxy+cy2+dx+ey+f進行因式分解的步驟是:(1)用十字相乘法分解ax2+bxy+cy2,得到一個十字相乘圖(有兩列);(2)把常數(shù)項f分解成兩個因式填在第三列上,要求第二、第三列構(gòu)成的十字交叉之積的和等于原式中的ey,第一、第三列構(gòu)成的十字交叉之積的和等于原式中的dx例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7x
16、y-3y2-xz+7yz-2z2解 (1)原式=(x-5y+2)(x+2y-1)(2)原式=(x+y+1)(x-y+4)(3)原式中缺x2項,可把這一項的系數(shù)看成0來分解原式=(y+1)(x+y-2)(4)原式=(2x-3y+z)(3x+y-2z)說明 (4)中有三個字母,解法仍與前面的類似2求根法我們把形如anxn+an-1xn-1+a1x+a0(n為非負整數(shù))的代數(shù)式稱為關(guān)于x的一元多項式,并用f(x),g(x),等記號表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,當x=a時,多項式f(x)的值用f(a)表示如對上面的多項式f(x)f(1)=12-31+2=0;f(-2)=(
17、-2)2-3(-2)+2=12若f(a)=0,則稱a為多項式f(x)的一個根定理1(因式定理) 若a是一元多項式f(x)的根,即f(a)=0成立,則多項式f(x)有一個因式x-a根據(jù)因式定理,找出一元多項式f(x)的一次因式的關(guān)鍵是求多項式f(x)的根對于任意多項式f(x) 要求出它的根是沒有一般方法的,然而當多項式f(x)的系數(shù)都是整數(shù)時,即整系數(shù)多項式時,經(jīng)常用下面的定理來判定它是否有有理根定理2的根,則必有p是a0的約數(shù),q是an的約數(shù)特別地,當a0=1時,整系數(shù)多項式f(x)的整數(shù)根均為an的約數(shù)我們根據(jù)上述定理,用求多項式的根來確定多項式的一次因式,從而對多項式進行因式分解例2 分解
18、因式:x3-4x2+6x-4分析 這是一個整系數(shù)一元多項式,原式若有整數(shù)根,必是-4的約數(shù),逐個檢驗-4的約數(shù):1,2,4,只有f(2)=23-422+62-4=0,即x=2是原式的一個根,所以根據(jù)定理1,原式必有因式x-2解法1 用分組分解法,使每組都有因式(x-2)原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2)解法2 用多項式除法,將原式除以(x-2),所以原式=(x-2)(x2-2x+2)說明 在上述解法中,特別要注意的是多項式的有理根一定是-4的約數(shù),反之不成立,即-4的約數(shù)不一定是多項式的根因此,必須
19、對-4的約數(shù)逐個代入多項式進行驗證變式練習1. 分解因式:9x4-3x3+7x2-3x-2分析 因為9的約數(shù)有1,3,9;-2的約數(shù)有1,為:所以,原式有因式9x2-3x-2解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)說明 若整系數(shù)多項式有分數(shù)根,可將所得出的含有分數(shù)的因式化為整系數(shù)因式,如上題中的因式可以化為9x2-3x-2,這樣可以簡化分解過程總之,對一元高次多項式f(x),如果能找到一個一次因式(x-a),那么f(x)就可以分解為(x-a)
20、g(x),而g(x)是比f(x)低一次的一元多項式,這樣,我們就可以繼續(xù)對g(x)進行分解了3待定系數(shù)法待定系數(shù)法是數(shù)學中的一種重要的解題方法,應用很廣泛,這里介紹它在因式分解中的應用在因式分解時,一些多項式經(jīng)過分析,可以斷定它能分解成某幾個因式,但這幾個因式中的某些系數(shù)尚未確定,這時可以用一些字母來表示待定的系數(shù)由于該多項式等于這幾個因式的乘積,根據(jù)多項式恒等的性質(zhì),兩邊對應項系數(shù)應該相等,或取多項式中原有字母的幾個特殊值,列出關(guān)于待定系數(shù)的方程(或方程組),解出待定字母系數(shù)的值,這種因式分解的方法叫作待定系數(shù)法例3 分解因式:x2+3xy+2y2+4x+5y+3分析 由于(x2+3xy+2
21、y2)=(x+2y)(x+y),若原式可以分解因式,那么它的兩個一次項一定是x+2y+m和xyn的形式,應用待定系數(shù)法即可求出m和n,使問題得到解決解 設(shè)x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比較兩邊對應項的系數(shù),則有解之得m=3,n=1所以原式=(x+2y+3)(x+y+1)說明 本題也可用雙十字相乘法,請同學們自己解一下變式練習1.分解因式:x4-2x3-27x2-44x+7分析 本題所給的是一元整系數(shù)多項式,根據(jù)前面講過的求根法,若原式有有理根,則只可能是1,7(7的約數(shù)),經(jīng)檢驗,它們都不是原式的
22、根,所以,在有理數(shù)集內(nèi),原式?jīng)]有一次因式如果原式能分解,只能分解為(x2+ax+b)(x2+cx+d)的形式解 設(shè)原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考慮b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7)說明 由于因式分解的唯一性,所以對b=-1,d=-7等可以不加以考慮本題如果b=1,d=7代入方程組后,無法確定a,c的值,就必須將bd=7的其他解代入方程組,直到求出待定系數(shù)為止本題沒有一次因式,因而無法運用求根法分解因式但利用待定系數(shù)法,使我們找到了二次因式由此可見,待定系數(shù)法在因式
23、分解中也有用武之地四、鞏固練習:1. 分解因式:(x2+xy+y2)-4xy(x2+y2)分析 本題含有兩個字母,且當互換這兩個字母的位置時,多項式保持不變,這樣的多項式叫作二元對稱式對于較難分解的二元對稱式,經(jīng)常令u=x+y,v=xy,用換元法分解因式解 原式=(x+y)2-xy2-4xy(x+y)2-2xy令x+y=u,xy=v,則原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2五、真題精解:1) 已知多項式ax3+bx2+cx+d除以x-1時的余數(shù)是1,除以x-2時的余數(shù)是3,那么,它除以(x-1
24、)(x-2)時所得的余數(shù)是什么?(第12屆“希望杯”試題)解:設(shè)原式=(x-1)(x-2)(ax+k)+(mx+n),當x=1時,原式=1,即m+n=1;當x=2時,原式=3,即2m+n=3,解此關(guān)于m、n的方程組得m=2,n=-1,故原式除以(x-1)(x-2)時的余數(shù)為x-12) k為何值時,多項式x2-2xy+ky2+3x-5y+2能分解成兩個一次因式的積?(天津市競賽試題)解:原式中不含y的項為x2+3x+2可分解為(x+1)(x+2),故可設(shè)原式=(x+1)+ay(x+2)+by,將其展開得:x2+(a+b)xy+aby2+3x+(2a+b)y+2,與原式對比系數(shù)得:a+b=-2,
25、ab=k, 2a+b=-5,解之得a=-3,b=1,k=-33) 如果x3+ax2+bx+8有兩個因式x+1和x+2,求a+b的值。(美國猶他州中學競賽試題)解法1:設(shè)原式=(x+1)(x+2)(x+k),展開后得:x3+(3+k)x2+(3k+2)x+2k,對比原式系數(shù)得a=3+k, b=3k+2, 8=2k,所以a+b=4k+5=16+5=21解法2:因當x=-1或x=-2時,原式=0,分別代入后得a-b+8=0, 4a-2b+8=0,解得a=7, b=14,故a+b=14真題實練:1下列四個從左到右的變形中,是因式分解的是( )A. (x+1)(x-1)=x2 B. (a-b)(m-n)=(b-a)(n-m) C. ab-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 兒童意外傷害預防與緊急救援安全教育協(xié)議
- 抖音直播火花主播打賞分成比例調(diào)整協(xié)議書
- 離婚訴訟股票分割及財產(chǎn)分割執(zhí)行專項協(xié)議
- 離婚協(xié)議財產(chǎn)分割及變更執(zhí)行保障協(xié)議
- 股權(quán)激勵計劃(ESOP)實施與員工股權(quán)激勵協(xié)議
- 基因治療藥物臨床試驗患者權(quán)益保護及隱私保護合作協(xié)議
- 國際化工程投資監(jiān)理與風險評估合同
- 虛擬現(xiàn)實游戲動作捕捉數(shù)據(jù)處理軟件租賃與后期制作協(xié)議
- 文物展覽運輸包裝設(shè)備租賃及展覽策劃合作協(xié)議
- 油田后勤保障派遣與公關(guān)服務協(xié)議
- GA/T 544-2021多道心理測試系統(tǒng)通用技術(shù)規(guī)范
- 年代小說先鋒小說
- 【超星爾雅學習通】世界建筑史網(wǎng)課章節(jié)答案
- (52)-皰疹性咽峽炎小兒推拿探秘
- 土建施工員培訓課件
- 新音樂初放 學堂樂歌說課課件
- GMP體系文件(手冊+程序)
- 陜西延長石油四海煤化工有限公司金屬鎂廠1萬噸-年金屬鎂生產(chǎn)項目環(huán)評報告
- 集電線路安裝工程質(zhì)量通病防治
- 大學生動漫創(chuàng)業(yè)計劃書
- 2023年四川二造《建設(shè)工程計量與計價實務(土木建筑)》考試重點題庫200題(含解析)
評論
0/150
提交評論