




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、第二十二章 一元二次方程 單元要點(diǎn)分析 教材內(nèi)容 1本單元教學(xué)的主要內(nèi)容 一元二次方程概念;解一元二次方程的方法;一元二次方程應(yīng)用題 2本單元在教材中的地位與作用 一元二次方程是在學(xué)習(xí)一元一次方程、二元一次方程、分式方程等基礎(chǔ)之上學(xué)習(xí)的,它也是一種數(shù)學(xué)建模的方法學(xué)好一元二次方程是學(xué)好二次函數(shù)不可或缺的,是學(xué)好高中數(shù)學(xué)的奠基工程應(yīng)該說,一元二次方程是本書的重點(diǎn)內(nèi)容 教學(xué)目標(biāo) 1知識與技能 了解一元二次方程及有關(guān)概念;掌握通過配方法、公式法、因式分解法降次解一元二次方程;掌握依據(jù)實(shí)際問題建立一元二次方程的數(shù)學(xué)模型的方法;應(yīng)用熟練掌握以上知識解決問題 2過程與方法 (1)通過豐富的實(shí)例,讓學(xué)生合作探
2、討,老師點(diǎn)評分析,建立數(shù)學(xué)模型根據(jù)數(shù)學(xué)模型恰如其分地給出一元二次方程的概念 (2)結(jié)合八冊上整式中的有關(guān)概念介紹一元二次方程的派生概念,如二次項(xiàng)等 (3)通過掌握缺一次項(xiàng)的一元二次方程的解法直接開方法,導(dǎo)入用配方法解一元二次方程,又通過大量的練習(xí)鞏固配方法解一元二次方程 (4)通過用已學(xué)的配方法解ax2+bx+c=0(a0)導(dǎo)出解一元二次方程的求根公式,接著討論求根公式的條件:b2-4ac>0,b2-4ac=0,b2-4ac<0 (5)通過復(fù)習(xí)八年級上冊整式的第5節(jié)因式分解進(jìn)行知識遷移,解決用因式分解法解一元二次方程,并用練習(xí)鞏固它 (6)提出問題、分析問題,建立一元二次方程的數(shù)學(xué)
3、模型,并用該模型解決實(shí)際問題 3情感、態(tài)度與價值觀 經(jīng)歷由事實(shí)問題中抽象出一元二次方程等有關(guān)概念的過程,使同學(xué)們體會到通過一元二次方程也是刻畫現(xiàn)實(shí)世界中的數(shù)量關(guān)系的一個有效數(shù)學(xué)模型;經(jīng)歷用配方法、公式法、分解因式法解一元一次方程的過程,使同學(xué)們體會到轉(zhuǎn)化等數(shù)學(xué)思想;經(jīng)歷設(shè)置豐富的問題情景,使學(xué)生體會到建立數(shù)學(xué)模型解決實(shí)際問題的過程,從而更好地理解方程的意義和作用,激發(fā)學(xué)生的學(xué)習(xí)興趣 教學(xué)重點(diǎn) 1一元二次方程及其它有關(guān)的概念 2用配方法、公式法、因式分解法降次解一元二次方程 3利用實(shí)際問題建立一元二次方程的數(shù)學(xué)模型,并解決這個問題 教學(xué)難點(diǎn) 1一元二次方程配方法解題 2用公式法解一元二次方程時的
4、討論 3建立一元二次方程實(shí)際問題的數(shù)學(xué)模型;方程解與實(shí)際問題解的區(qū)別 教學(xué)關(guān)鍵 1分析實(shí)際問題如何建立一元二次方程的數(shù)學(xué)模型 2用配方法解一元二次方程的步驟 3解一元二次方程公式法的推導(dǎo) 課時劃分 本單元教學(xué)時間約需16課時,具體分配如下: 221 一元二次方程 2課時 222 降次解一元二次方程 7課時 223 實(shí)際問題與一元二次方程 4課時 教學(xué)活動、習(xí)題課、小結(jié) 3課時221 一元二次方程第一課時 教學(xué)內(nèi)容 一元二次方程概念及一元二次方程一般式及有關(guān)概念 教學(xué)目標(biāo) 了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;應(yīng)用一元二次方程概念解決一些簡單題目 1通過設(shè)置問
5、題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義 2一元二次方程的一般形式及其有關(guān)概念 3解決一些概念性的題目 4態(tài)度、情感、價值觀 4通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情 重難點(diǎn)關(guān)鍵 1重點(diǎn):一元二次方程的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題 2難點(diǎn)關(guān)鍵:通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念 教學(xué)過程 一、復(fù)習(xí)引入 學(xué)生活動:列方程 問題(1)九章算術(shù)“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?” 大意是說:已知長方形門的高比寬多6尺8寸,門的對角
6、線長1丈,那么門的高和寬各是多少? 如果假設(shè)門的高為x尺,那么,這個門的寬為_尺,根據(jù)題意,得_ 整理、化簡,得:_問題(2)如圖,如果,那么點(diǎn)C叫做線段AB的黃金分割點(diǎn) 如果假設(shè)AB=1,AC=x,那么BC=_,根據(jù)題意,得:_ 整理得:_ 問題(3)有一面積為54m2的長方形,將它的一邊剪短5m,另一邊剪短2m,恰好變成一個正方形,那么這個正方形的邊長是多少? 如果假設(shè)剪后的正方形邊長為x,那么原來長方形長是_,寬是_,根據(jù)題意,得:_ 整理,得:_ 老師點(diǎn)評并分析如何建立一元二次方程的數(shù)學(xué)模型,并整理 二、探索新知 學(xué)生活動:請口答下面問題 (1)上面三個方程整理后含有幾個未知數(shù)? (2
7、)按照整式中的多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次? (3)有等號嗎?或與以前多項(xiàng)式一樣只有式子? 老師點(diǎn)評:(1)都只含一個未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號,是方程 因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程 一般地,任何一個關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a0)這種形式叫做一元二次方程的一般形式 一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng) 例1將方程(8-2x)(5-2
8、x)=18化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng) 分析:一元二次方程的一般形式是ax2+bx+c=0(a0)因此,方程(8-2x)(5-2x)=18必須運(yùn)用整式運(yùn)算進(jìn)行整理,包括去括號、移項(xiàng)等 解:去括號,得: 40-16x-10x+4x2=18 移項(xiàng),得:4x2-26x+22=0 其中二次項(xiàng)系數(shù)為4,一次項(xiàng)系數(shù)為-26,常數(shù)項(xiàng)為22 例2(學(xué)生活動:請二至三位同學(xué)上臺演練) 將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)、二次項(xiàng)系數(shù);一次項(xiàng)、一次項(xiàng)系數(shù);常數(shù)項(xiàng) 分析:通過完全平方公式和平方差公式把(x+1)2+(x-
9、2)(x+2)=1化成ax2+bx+c=0(a0)的形式 解:去括號,得: x2+2x+1+x2-4=1 移項(xiàng),合并得:2x2+2x-4=0 其中:二次項(xiàng)2x2,二次項(xiàng)系數(shù)2;一次項(xiàng)2x,一次項(xiàng)系數(shù)2;常數(shù)項(xiàng)-4 三、鞏固練習(xí) 教材P32 練習(xí)1、2 四、應(yīng)用拓展 例3求證:關(guān)于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程 分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+170即可 證明:m2-8m+17=(m-4)2+1 (m-4)20 (m-4)2+1>0,即(m-4)2+10 不論m取何值,該方程都是一元二次方程 五、
10、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評) 本節(jié)課要掌握: (1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次項(xiàng)、二次項(xiàng)系數(shù),一次項(xiàng)、一次項(xiàng)系數(shù),常數(shù)項(xiàng)的概念及其它們的運(yùn)用 六、布置作業(yè) 1教材P34 習(xí)題221 1、2 2選用作業(yè)設(shè)計 作業(yè)設(shè)計 一、選擇題 1在下列方程中,一元二次方程的個數(shù)是( ) 3x2+7=0 ax2+bx+c=0 (x-2)(x+5)=x2-1 3x2-=0 A1個 B2個 C3個 D4個 2方程2x2=3(x-6)化為一般形式后二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)分別為( ) A2,3,-6 B2,-3,18 C2,-3,6 D2,3,6 3px
11、2-3x+p2-q=0是關(guān)于x的一元二次方程,則( ) Ap=1 Bp>0 Cp0 Dp為任意實(shí)數(shù) 二、填空題 1方程3x2-3=2x+1的二次項(xiàng)系數(shù)為_,一次項(xiàng)系數(shù)為_,常數(shù)項(xiàng)為_ 2一元二次方程的一般形式是_ 3關(guān)于x的方程(a-1)x2+3x=0是一元二次方程,則a的取值范圍是_ 三、綜合提高題 1a滿足什么條件時,關(guān)于x的方程a(x2+x)=x-(x+1)是一元二次方程? 2關(guān)于x的方程(2m2+m)xm+1+3x=6可能是一元二次方程嗎?為什么? 3一塊矩形鐵片,面積為1m2,長比寬多3m,求鐵片的長,小明在做這道題時,是這樣做的: 設(shè)鐵片的長為x,列出的方程為x(x-3)=1
12、,整理得:x2-3x-1=0小明列出方程后,想知道鐵片的長到底是多少,下面是他的探索過程:第一步:x1234x2-3x-1-3-3 所以,_<x<_第二步: x3.13.23.33.4x2-3x-1-0.96-0.36 所以,_<x<_ (1)請你幫小明填完空格,完成他未完成的部分; (2)通過以上探索,估計出矩形鐵片的整數(shù)部分為_,十分位為_答案:一、1A 2B 3C二、13,-2,-4 2ax+bx+c=0(a0) 3a1三、1化為:ax2+(a-+1)x+1=0,所以,當(dāng)a0時是一元二次方程 2可能,因?yàn)楫?dāng),當(dāng)m=1時,該方程是一元二次方程 3(1)-1,3,3,
13、4,-0.01,0.36,3.3,3.4 (2)3,3221 一元二次方程第二課時 教學(xué)內(nèi)容 1一元二次方程根的概念; 2根據(jù)題意判定一個數(shù)是否是一元二次方程的根及其利用它們解決一些具體題目 教學(xué)目標(biāo) 了解一元二次方程根的概念,會判定一個數(shù)是否是一個一元二次方程的根及利用它們解決一些具體問題 提出問題,根據(jù)問題列出方程,化為一元二次方程的一般形式,列式求解;由解給出根的概念;再由根的概念判定一個數(shù)是否是根同時應(yīng)用以上的幾個知識點(diǎn)解決一些具體問題 重難點(diǎn)關(guān)鍵 1重點(diǎn):判定一個數(shù)是否是方程的根; 2難點(diǎn)關(guān)鍵:由實(shí)際問題列出的一元二次方程解出根后還要考慮這些根是否確定是實(shí)際問題的根教學(xué)過程一、復(fù)習(xí)引
14、入 學(xué)生活動:請同學(xué)獨(dú)立完成下列問題問題1如圖,一個長為10m的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為8m,那么梯子的底端距墻多少米? 設(shè)梯子底端距墻為xm,那么, 根據(jù)題意,可得方程為_ 整理,得_列表:x012345678 問題2一個面積為120m2的矩形苗圃,它的長比寬多2m,苗圃的長和寬各是多少? 設(shè)苗圃的寬為xm,則長為_m 根據(jù)題意,得_ 整理,得_列表:x01234567891011 老師點(diǎn)評(略) 二、探索新知 提問:(1)問題1中一元二次方程的解是多少?問題2中一元二次方程的解是多少? (2)如果拋開實(shí)際問題,問題1中還有其它解嗎?問題2呢? 老師點(diǎn)評:(1)問題1中x
15、=6是x2-36=0的解,問題2中,x=10是x2+2x-120=0的解 (3)如果拋開實(shí)際問題,問題(1)中還有x=-6的解;問題2中還有x=-12的解 為了與以前所學(xué)的一元一次方程等只有一個解的區(qū)別,我們稱: 一元二次方程的解叫做一元二次方程的根 回過頭來看:x2-36=0有兩個根,一個是6,另一個是6,但-6不滿足題意;同理,問題2中的x=-12的根也滿足題意因此,由實(shí)際問題列出方程并解得的根,并不一定是實(shí)際問題的根,還要考慮這些根是否確實(shí)是實(shí)際問題的解 例1下面哪些數(shù)是方程2x2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4 分析:要判定一個數(shù)是否是方程的根,只要
16、把其代入等式,使等式兩邊相等即可 解:將上面的這些數(shù)代入后,只有-2和-3滿足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的兩根 例2你能用以前所學(xué)的知識求出下列方程的根嗎? (1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0 分析:要求出方程的根,就是要求出滿足等式的數(shù),可用直接觀察結(jié)合平方根的意義 解:(1)移項(xiàng)得x2=64 根據(jù)平方根的意義,得:x=±8 即x1=8,x2=-8 (2)移項(xiàng)、整理,得x2=2 根據(jù)平方根的意義,得x=± 即x1=,x2=- (3)因?yàn)閤2-3x=x(x-3) 所以x2-3x=0,就是x(x-3)
17、=0 所以x=0或x-3=0 即x1=0,x2=3 三、鞏固練習(xí) 教材P33 思考題 練習(xí)1、2 四、應(yīng)用拓展 例3要剪一塊面積為150cm2的長方形鐵片,使它的長比寬多5cm,這塊鐵片應(yīng)該怎樣剪? 設(shè)長為xcm,則寬為(x-5)cm 列方程x(x-5)=150,即x2-5x-150=0 請根據(jù)列方程回答以下問題: (1)x可能小于5嗎?可能等于10嗎?說說你的理由(2)完成下表: x1011121314151617x2-5x-150 (3)你知道鐵片的長x是多少嗎? 分析:x2-5x-150=0與上面兩道例題明顯不同,不能用平方根的意義和八年級上冊的整式中的分解因式的方法去求根,但是我們可以
18、用一種新的方法“夾逼”方法求出該方程的根 解:(1)x不可能小于5理由:如果x<5,則寬(x-5)<0,不合題意 x不可能等于10理由:如果x=10,則面積x2-5x-150=-100,也不可能(2) x 10 11 12 1314151617x2-5x-150-100-84-66-46-2402654 (3)鐵片長x=15cm 五、歸納小結(jié)(學(xué)生歸納,老師點(diǎn)評) 本節(jié)課應(yīng)掌握: (1)一元二次方程根的概念及它與以前的解的相同處與不同處; (2)要會判斷一個數(shù)是否是一元二次方程的根; (3)要會用一些方法求一元二次方程的根 六、布置作業(yè) 1教材P34 復(fù)習(xí)鞏固3、4 綜合運(yùn)用5、6、7 拓廣探索8、9 2選用課時作業(yè)設(shè)計 作業(yè)設(shè)計 一、選擇題 1方程x(x-1)=2的兩根為( ) Ax1=0,x2=1 Bx1=0,x2=-1 Cx1=1,x2=2 Dx1=-1,x2=2 2方程ax(x-b)+(b-x)=0的根是( ) Ax1=b,x2=a Bx1=b,x2= Cx1=a,x2= Dx1=a2,x2=b2 3已知x=-1是方程a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 焊接工藝參數(shù)優(yōu)化考核試卷
- 緊固件螺紋設(shè)計深入考核試卷
- 管道工程綠色施工技術(shù)創(chuàng)新實(shí)踐與發(fā)展動態(tài)考核試卷
- 滾動軸承在海洋工程中的應(yīng)用考核試卷
- 紙機(jī)設(shè)備的狀態(tài)監(jiān)測與預(yù)測維護(hù)考核試卷
- 描寫月亮的初三語文作文
- 開心為題初二語文作文
- 空調(diào)系統(tǒng)的故障樹分析考核試卷
- 焙烤食品制造食品安全風(fēng)險識別與控制考核試卷
- 批發(fā)業(yè)品牌故事與內(nèi)容營銷考核試卷
- 機(jī)電傳動與控制知到智慧樹章節(jié)測試課后答案2024年秋山東石油化工學(xué)院
- 2023-2024網(wǎng)絡(luò)文學(xué)閱讀平臺價值研究報告
- GB/T 5534-2024動植物油脂皂化值的測定
- 養(yǎng)老院消防預(yù)案和應(yīng)急預(yù)案
- 2024年大學(xué)生心理健康知識競賽題庫及答案共180題
- 精神殘疾人康復(fù)培訓(xùn)
- 夫妻忠誠協(xié)議書(完整版)
- 水利基礎(chǔ)理論知識單選題100道及答案解析
- 2024年面向雙高電力系統(tǒng)發(fā)展需求的柔性直流輸電技術(shù)報告
- 發(fā)酵類制藥工業(yè)水污染物間接排放標(biāo)準(zhǔn)DB41 758-2012
- 2025年中考?xì)v史復(fù)習(xí)專項(xiàng)訓(xùn)練:中國近代史材料題40題(原卷版)
評論
0/150
提交評論