固體物理知識點總結(jié)復(fù)習(xí)課程_第1頁
固體物理知識點總結(jié)復(fù)習(xí)課程_第2頁
固體物理知識點總結(jié)復(fù)習(xí)課程_第3頁
固體物理知識點總結(jié)復(fù)習(xí)課程_第4頁
固體物理知識點總結(jié)復(fù)習(xí)課程_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、固體物理知識點總結(jié)、測試重點晶體結(jié)構(gòu)、晶體結(jié)合、晶格振動、能帶論的根本概念和根本理論和知識二、復(fù)習(xí)內(nèi)容第一章晶體結(jié)構(gòu)根本概念1、晶體分類及其特點:單晶粒子在整個固體中周期性排列非晶粒子在幾個原子范圍排列有序短程有序多晶粒子在微米尺度內(nèi)有序排列形成晶粒,晶粒隨機堆積準(zhǔn)晶體粒子有序排列介于晶體和非晶體之間2、晶體的共性:解理性沿某些晶面方位容易劈裂的性質(zhì)各向異性晶體的性質(zhì)與方向有關(guān)旋轉(zhuǎn)對稱性平移對稱性3、晶體平移對稱性描述:基元構(gòu)成實際晶體的一個最小重復(fù)結(jié)構(gòu)單元格點用幾何點代表基元,該幾何點稱為格點晶格、平移矢量基矢確定后,一個點陣可以用一個矢量表示,稱為晶格平移矢量=,任+/2久+L&.乩&=0

2、,土1:2,土31)三個不共而矢量小口廠也為點陣空間坐標(biāo)矢量,稱為基矢口元胞以一個格點為頂點,以某一方向上相鄰格點的距離為該方向的周期,以三個不同方向的周期為邊長,構(gòu)成的最小體積平行六面體.原胞是晶體結(jié)構(gòu)的最小體積重復(fù)單元,可以平行、無交疊、無空隙地堆積構(gòu)成整個晶體.每個原胞含1個格點,原胞選擇不是唯一的晶胞以一格點為原點,以晶體三個不共面對稱軸晶軸為坐標(biāo)軸,坐標(biāo)軸上原點到相鄰格點距離為邊長,構(gòu)成的平行六面體稱為晶胞.基矢WS元胞以一格點為中央,作該點與最鄰近格點連線的中垂面,中垂面圍成的多面體稱為WSI胞.WSK胞含一個格點復(fù)式格子不同原子構(gòu)成的假設(shè)干相同結(jié)構(gòu)的簡單晶格相互套構(gòu)形成的晶格簡單

3、格子點陣格點的集合稱為點陣布拉菲格子全同原子構(gòu)成的晶體結(jié)構(gòu)稱為布拉菲晶格子.4、常見晶體結(jié)構(gòu):簡單立方、體心立方、面心立方、金剛石兩個面心立方晶格沿體對角線相互移動1/4對角線長套構(gòu)成體對角線上離子面心立方與頂角、面心離子面心立方沿體對角線相互移動1/4對角線長套構(gòu)而成.鉛鋅礦晶格常數(shù)I晶胞邊長同、樸向稱為晶格常拓頂角閃鋅礦小十和cr各自構(gòu)成商立方晶格,沿體對角線相互移動1/2對角線長套構(gòu)而成.氯化鈉Na卡和Cl各自構(gòu)成面心立方格子沿立方邊長方向相互移動半個邊長套構(gòu)形成.鈣鈦礦結(jié)構(gòu)六方礁離子晶格和六方鋅離子品格沿六萬粕c移動田川長度套梅形成.氯化葩A離子在立方頂角,B離子在立方體心氧八面體中央

4、,0、OrO】n分別在立方面心,A A、0廣On.01n各自組成簡單立方格子套構(gòu)而成5、密排面將原子看成同種等大剛球,在同一平面上,一個球最多與六個球相切,形成密排面密堆積密排面按最緊密方式疊起來形成的三維結(jié)構(gòu)稱為密堆積.六腳密堆積密排面按ABABAB堆積立方密堆積密排面按ABCABCABC排列5、晶體對稱性及分類:對稱性的定義晶體繞某軸旋轉(zhuǎn)或?qū)δ滁c反演后能自身重合的性質(zhì)對稱面對稱中央旋轉(zhuǎn)反演軸次旋轉(zhuǎn)反演軸方定軸旋轉(zhuǎn)空rj后再中央反演,晶體重合,將晶體圍繞某一8種根本點對稱操作中央反演f鏡面反映 ba;工工;)n次旋轉(zhuǎn)對稱軸C將晶體圍繞某一固定軸旋轉(zhuǎn)空后,晶體重合,那么對應(yīng)的固定軸32種宏觀對

5、稱性P簡單I-體心F-面心1?一 菱形c-底心14種布拉菲晶胞n n稱為網(wǎng)次旋轉(zhuǎn)對稱軸,其操作矩陣是正交矩陣中14種布拉菲晶胞晶體32個點群名稱標(biāo)記符號的意義熊夫利符號回轉(zhuǎn)群晶體只含有一個旋轉(zhuǎn)對稱軸G,C2,C35C4JQ雙面群A星體包含一個重植轉(zhuǎn)軸和打個=-垂直的二重軸D D2 2.D.D3 3.D.D4 4.D.D6 6q群GG加上中央反演對滿意G群rcCj加上搐面反映對稱面c勒群二加上與冷重旋轉(zhuǎn)軸垂直的水平對稱武GhGhC C群3GJ口上汽個含氣重旋轉(zhuǎn)軸外群D D加上與重旋鏘由垂直的水平對禰面口.7 7珀D D4 4的D6kD6k2壯群%口上通過程重軸及兩根二重軸的角笄分戰(zhàn)的又慚面Did

6、,D3dDid,D3d群一晶體只包含象轉(zhuǎn)軸工風(fēng)TaTa群T Td d含止四面體24個對稱操作IT Td dO O群OOA A中加個轉(zhuǎn)動操作加中央反演r.4 4T T群T TT Td d中12個轉(zhuǎn)動操作T T4群T T加上中央反演47個品系晶豕:滿足被裨宏觀對林類型的晶胞,其基矢外瓦的組合只有7種,每一種組合稱為一個晶系.6、描述晶體性質(zhì)的參數(shù):配位數(shù)晶體中一個原子周圍最鄰近原子個數(shù)稱為配位數(shù).晶體最大配位數(shù)為12,晶體可能配位數(shù)12,8,6,4,3,2晶列過任意兩格點的直線稱為晶列晶向晶列方向晶向指數(shù)晶向指數(shù)晶列指數(shù)口占4設(shè)元胞基矢為片痣,格點O為原點,沿著某一晶體方向,格點X的平移矢量,%、

7、-樂=應(yīng)+祝+氫生/;置石達三0,土L土工力/1:一將4/;4化成互質(zhì)整數(shù),二寸彳:,;:4=,】:4:b就是晶向指數(shù)晶面全部格點用一族平行平面包含,該平行平面族稱為晶面族,族中每個平面稱為晶面晶面指數(shù)瓦/戊力晶面在元胞基矢截距的倒數(shù)的互質(zhì)整數(shù)組稱為晶面指數(shù)密勒指數(shù)hkl晶面在晶胞基矢上截距的倒數(shù)的互質(zhì)整數(shù)組稱為密勒指數(shù)面間距密勒指數(shù)AkJ晶面系晶面間距,面密度體密度晶面上的格點密度a5面間距d之間滿足式中d為格點體密度.致密度晶胞中原子最大體積之和“晶相體積解理面對原子晶體,密勒指數(shù)簡單的晶面族,面間距較大,晶面格點密度大,晶面間結(jié)合力較小,容易解理.對離子晶體,晶面格點密度大且晶面是電中性

8、的晶面容易解理7、倒格子:定義倒格子是晶格點陣在波矢空間的傅立葉變換倒格子基矢倒格子基矢次總行3b.21bi2&震C小 a 八n3QQ=af(a2XaJ為正格子元胞體積倒格矢G,hbtkb、+h*b_(八八?=.;1,2?土3+)布里淵區(qū)以任意倒格點為原點,作所有倒格矢的垂直平分面將倒格子空間分成的一系列區(qū)域,稱為布里淵區(qū)理論公式1、布拉菲點陣分布函數(shù)?2、倒格矢3、倒格子基矢與正格子關(guān)系式.倒格子基矢與正格子的關(guān)系為,匚;2充1i=j&二23.=?7!.J=1,2,3:J05j*4、晶面指數(shù)(57-60)、密勒指數(shù)(61)、晶面間距(65-66)、晶面原子密度的計算???圖形和關(guān)系曲線1、簡

9、單立方(配位數(shù)、元胞、元胞基矢、晶胞、晶胞基矢、不同晶面上格點分布、倒格子基矢、第一布里淵區(qū))原胞基矢,d:=ai=4?ai=akW-L次._%國二網(wǎng)二同=a體積,Q=a,(3ixj)=a2、簡單立方晶格晶胞基矢,a-aib-ajc-ak晶格常數(shù),a=b=c-a晶胞含1個格點,體積晶胞與原胞晶胞與原胞ci)設(shè)簡單;,方格子的基矢為=溯、一尸小螞=血那么對應(yīng)的倒格子基矢為.b2a(Ire/ajjb/(2刊ML(2)由%、與、%作出倒格子空間.倒格子元胞仍為簡單立方,元胞關(guān)小為(2n3口(3)簡約布里淵區(qū)是原點.六個最近鄰倒格點連線的中垂而圍成的立方體,其體枳為且包含了一個格點.圖1-1Ma)簡單

10、一立方圖1-44簡單方格子的簡約布里淵區(qū)2、體心立方(配位數(shù)、元胞、元胞基矢、晶胞、晶胞基矢、不同面上格點分布、倒格子基矢、第一布里淵區(qū))體心立方晶格晶胞基矢,*5=ai,b=ay,c=alblc晶格常數(shù),同=同=c=a晶胞含2個格點,體枳,Q=Q原胞基矢,弓=?-f+E)怎=$(1-)+工)G=彳.+亍一1)同=同|=同=當(dāng)原胞體積,晶胞與原胞晶胞與原胞對體心立方結(jié)構(gòu),其原胞的基矢可取為長=5-+j+*I.2=亍,一十以卜3=5+j-富上上上其倒將子能矢為27r27r2開如7+&.蚓fc+,.加t+j.4、面心立方配位數(shù)、元胞、元胞基矢、晶胞、晶胞基矢、不同面上格點分布、倒格子基矢、第一布里

11、淵區(qū) 面心立方晶格面心立方晶格晶胞基矢,-i|-=-B-k-*3=ai,b=aj,c=akle晶格常數(shù),a=b=c-a晶胞含4個格點,體積,C=.厚胞基矢厚胞基矢, ,匹匹行十行十D同二1匹六同二烏原胞體積,6、5、晶胞與原胞晶胞與原胞倒格子基矢、元胞體積,4、金剛石結(jié)構(gòu)最小結(jié)構(gòu)單元、配位數(shù)、元胞、晶胞、晶胞基矢、不同面格點分布、7、8、司也網(wǎng)構(gòu)成體心立方格子,元胞體積,Q=,匕2x四=41-I(115-120)倒格子基矢、第一布里淵區(qū)晶胞與元胞沿體對角線相互移動1/4對角線長度套構(gòu)形成面心立方格子復(fù)式.基元由面心或頂角原子和1/4對角線長度處原子組成.晶胞基矢,a=ai.b=ajR=akab

12、c晶格常數(shù),團=|X|=團=4晶胞包含外格點,晶胞體積,金剛石結(jié)構(gòu)金剛石晶格由兩個面心立方格子套構(gòu)而成,第一布里淵區(qū)由兩個面心立方倒格子的第布里淵區(qū)套構(gòu)而成.體對角線原子面心立方晶格與頂角、面心原子面心立方晶格第二章晶體結(jié)合根本概念1、兩粒子間排斥力及其性質(zhì)兩粒子間吸引力及其性質(zhì)兩粒子間總相互作用力及其特點以廠工r此?.1rT=0吸弓扇能持屋勢小吸弓扇能持屋勢小小二小二0且、5 5、曲、n0n0ntnntnr r兩粒子間距%兩粒子平衡間距吸引勢能:異性電荷之間的庫倫吸引勢長程勢能排斥勢能:K兩同性電荷庫倫排斥勢長程勢能.以泡利不相容短程勢短程勢能3、U.=VIU U%/J至1晶體總相互作用能晶

13、體結(jié)合能絕對零度下,忽略粒子零點振動能,晶體粒子最小總相互作用勢能一二一等于晶體結(jié)合能川2、兩粒子間相互作用勢能定義:晶體中正、負(fù)離子庫侖引力形成的結(jié)合力稱為離子鍵0離子鍵特點:1、沒有方向性和飽和性2、離子鍵越強,離子晶體越穩(wěn)定馬德隆常數(shù)_十_HP22_的mi#1(n:+n;+)6、共價鍵的形成及其特點兩個原子各出一個電子,在兩個原子核之間形成較大電子云密度被兩個原子共用、自旋相反配對的電子結(jié)構(gòu)飽和性一個電子與另一個電子配對后不再與其它電子配對8-N定那么共價群數(shù)等干原子軌造未填滿價電子數(shù)方向性共價鍵方向在電子波函數(shù)最大方向上,共價鏈強弱決定于兩7、個電子波函數(shù)的交迭程度極性共價鍵形成及其特

14、點共用電子對偏向負(fù)電性大的原子的共價鍵6、 金屬鍵形成及其特點金屬原子結(jié)合成金屬晶體時,價電子脫離原子成為晶格共有電子,原子成為正離子實,共有化電子與離子實庫侖引力構(gòu)成金屬鍵7、范德瓦耳斯鍵形成及其特點靜電力一根性分子偶極矩之間的靜電力范健瓦爾斯鍵誘導(dǎo)力根性分子偶極矩與感應(yīng)偶極矩靜龜力色ffit為一非極性分子瞬時偶極矩間靜用力原子負(fù)電性一能能原子電離能基態(tài)原子失去一個電子成為正離子所需能量原子親和能基態(tài)原子俘獲一個電子成為負(fù)離子時釋放的能量8、原子負(fù)電性與晶體結(jié)構(gòu)關(guān)系4、離子鍵及特點依靠離子f結(jié)合形成的晶體稱為離子晶體.5、8、格波波矢、波矢空間、1-負(fù)電性小和負(fù)電性大兩種原子結(jié)合傾向形成離子

15、晶體2 .原子負(fù)電性差異減小,原子結(jié)合由離子捶向共價性變化3 .負(fù)電性較大的同種原子結(jié)令成晶體,陋向形成共價晶體4 .負(fù)電性較小的同種原子結(jié)合成晶體,懊向形成金屬晶體5、 氫與負(fù)電性大的原子形成共價鍵后,負(fù)電荷中央與氫核偏離,氫核與另一個原子秸合形成氫域晶體10、SP3、SF2、SP軌道雜化的形成及其性質(zhì)原子S、P軌道波函數(shù)雜化形成的波函數(shù)給出的電子幾率分布稱為雜化軌道.理論公式1、兩粒子間相互作用能的一般形式2、兩粒子間相互作用力的一般形式3、晶體體積彈性模量4、原子負(fù)電性計算式圖形和關(guān)系曲線1、兩粒子相互作用勢能2、兩粒子相互作用力3、SP3雜化軌道示意圖第三章品格振動根本概念1、一維單原

16、子晶格振動及其特點2、一維雙原子晶格振動及其特點3、簡諧近似原子繞格點彈性振動諧振,振動位移與彈性力成正比4、最近鄰近似只考慮最近郊原子相互作用勢能,并且瓦1a=凡凡得到.5、周期性邊界條件N個元胞一維雙原子晶格周期性邊界條件,Un-4+-36、格波71原子集體振動形成波長幺=,的簡諧波,稱為一個格波qLattice加卡已或晶格振動的一個簡正模.定義晶體體積彈性模量匯=:波矢在第一布里淵區(qū)取值,9、8、色散關(guān)系圓頻率-波長關(guān)系群速度相速度原子振動狀態(tài)用格波位相描述,波速等于振動位相傳播速度,稱為相速cou_=光學(xué)支格波色散關(guān)系光學(xué)模,J3;+2#應(yīng)GO3g萬/11、聲學(xué)支格波聲學(xué)支格波色散關(guān)系

17、聲學(xué)模,討+用+2產(chǎn)出cos)長縱光學(xué)波、長縱聲學(xué)波基元中兩個原子相反振動,形成長光學(xué)波10、振動模式數(shù)每個波矢對應(yīng)一個聲學(xué)波圓頻率和一個光學(xué)波圓頻率.胞一維雙原子晶格共有2N個獨立振動模式自由度.11、振動模式數(shù)與晶體結(jié)構(gòu)的關(guān)系11、聲子晶格振動能量的“量子方嗎gj一聲子格波能量子聲子準(zhǔn)動量聲子準(zhǔn)動量五的=方+h2b2+力員波矢密度ZX1L第一布里淵區(qū)波矢個數(shù)uu.4uu,i.y力,他1那么北口_片屋5 5一削ftftNa10、光學(xué)支格波N個元聲子統(tǒng)計分布一定溫度下,晶體中能量為統(tǒng)計給出,平均聲子數(shù)2、一維、二維、三維品格周期性邊界3、三維晶格振動總能量表達式及其意義4、晶格振動模式密度定義

18、5、一維、二維、三維晶格振動模式密度計算三維晶格振動模式密度三維晶格振動模式密度維晶格振動模式密度維晶格振動模式密度, ,g(田)=-frdl0力)2巴奴到1隼晶格振動模式密度隼晶格振動模式密度, ,圖形和關(guān)系曲線12、振動模式密度g12、正那么變換獨立振動模式的正交性、dnd完備性周期性邊界條件下,所有的品格振動模式構(gòu)成正交、完備集態(tài)空間理論公式1、一維格波Rn=nan=建.q-第釐個原子的振動位相為赧=w(0)expf(/9rcf+mqao)iy維格波三維格波解%.二工2的平均聲子數(shù)由玻色-愛因斯坦我由=周期性勢場近似假設(shè)單電子勢具有晶格平移周期性,晶體價電子的定態(tài)薛定謂方程求解轉(zhuǎn)化為晶格

19、周期場中單電子薛定渭方程求解2、電子共有化運動、晶體電子、能帶電子波包代表的電子稱為能帶電子3、布洛赫定理晶體中共有化運動電子的本征波函數(shù)是調(diào)幅平面波布洛赫波,外7=染W(wǎng)布洛赫波函數(shù)出任=%任+旦布洛赫波的物理意義由布洛赫波函數(shù),得到晶體共有化運動電子的幾率分布,4、周期性邊界條件矢量不是平移算符本征值乂R的量子數(shù) 稱為電子波矢、波矢空間、波矢空間密度、電子能態(tài)狀態(tài)密度1、一維單原子晶格色散關(guān)系曲線第四章晶體能帶根本概念1、單電子近似包括:絕熱近似假設(shè)相對于電子運動速度,離子實近似固定在格點上不動.平均場近似假設(shè)每個價電子所處的周期場相同,與其它價電子、離子實的庫侖相互作用只與該價電子位置有關(guān)5、電子波矢6、能帶共有化電子能量本征值,不同波矢對應(yīng)的能量值能級的集合,稱為能帶禁帶能隙、滿帶、空帶、導(dǎo)帶能量最低的空帶、價帶能量最高的滿帶、近滿帶、半滿帶、能帶底、能帶頂、能帶寬度7、準(zhǔn)經(jīng)典近似、波包用能帶波矢附近J卜范圍內(nèi)的電子本征態(tài)疊加構(gòu)成波包,1SED=8、電子平均速度能帶電子波包群速度定義為能帶電子的平均速度力3t電子加速

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論