



下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、24.3 正多邊形和圓 教學目標 了解正多邊形和圓的有關(guān)概念;理解并掌握正多邊形半徑和邊長、邊心距、中心角之間的關(guān)系,會應用多邊形和圓的有關(guān)知識畫多邊形 復習正多邊形概念,讓學生盡可能講出生活中的多邊形為引題引入正多邊形和圓這一節(jié)間的內(nèi)容 重難點、關(guān)鍵 1重點:講清正多邊形和圓中心正多邊形半徑、中心角、弦心距、邊長之間的關(guān)系 2難點與關(guān)鍵:通過例題使學生理解四者:正多邊形半徑、中心角、弦心距、邊長之間的關(guān)系 教學過程 一、復習引入 請同學們口答下面兩個問題 1什么叫正多邊形? 2從你身邊舉出兩三個正多邊形的實例,正多邊形具有軸對稱、中心對稱嗎?其對稱軸有幾條,對稱中心是哪一點? 二、探索新知如
2、果我們以正多邊形對應頂點的交點作為圓心,過點到頂點的連線為半徑,能夠作一個圓,很明顯,這個正多邊形的各個頂點都在這個圓上,如圖,正六邊形ABCDEF,連結(jié)AD、CF交于一點,以O(shè)為圓心,OA為半徑作圓,那么肯定B、C、D、E、F都在這個圓上 因此,正多邊形和圓的關(guān)系十分密切,只要把一個圓分成相等的一些弧,就可以作出這個圓的內(nèi)接正多邊形,這個圓就是這個正多邊形的外接圓 我們以圓內(nèi)接正六邊形為例證明 如圖所示的圓,把O分成相等的6段弧,依次連接各分點得到六邊ABCDEF,下面證明,它是正六邊形 AB=BC=CD=DE=EF又A=BCF=(BC+CD+DE+EF)=2BC B=CDA=(CD+DE+
3、EF+FA)=2CD A=B 同理可證:B=C=D=E=F=A 又六邊形ABCDEF的頂點都在O上 根據(jù)正多邊形的定義,各邊相等、各角相等、六邊形ABCDEF是O的內(nèi)接正六邊形,O是正六邊形ABCDEF的外接圓 為了今后學習和應用的方便,我們把一個正多邊形的外接圓的圓心叫做這個多邊形的中心 外接圓的半徑叫做正多邊形的半徑 正多邊形每一邊所對的圓心角叫做正多邊形的中心角 中心到正多邊形的一邊的距離叫做正多邊形的邊心距 例1已知正六邊形ABCDEF,如圖所示,其外接圓的半徑是a,求正六邊形的周長和面積 分析:要求正六邊形的周長,只要求AB的長,已知條件是外接圓半徑,因此自然而然,邊長應與半徑掛上鉤
4、,很自然應連接OA,過O點作OMAB垂于M,在RtAOM中便可求得AM,又應用垂徑定理可求得AB的長正六邊形的面積是由六塊正三角形面積組成的解: 現(xiàn)在我們利用正多邊形的概念和性質(zhì)來畫正多邊形 例2利用你手中的工具畫一個邊長為3cm的正五邊形 分析:要畫正五邊形,首先要畫一個圓,然后對圓五等分,因此,應該先求邊長為3的正五邊形的半徑解:正五邊形的中心角AOB=72°,如圖,AOC=30°,OA=AB÷sin36°=1.5÷sin36°2.55(cm) 畫法(1)以O(shè)為圓心,OA=2.55cm為半徑畫圓; (2)在O上順次截取邊長為3cm
5、的AB、BC、CD、DE、EA (3)分別連結(jié)AB、BC、CD、DE、EA 則正五邊形ABCDE就是所要畫的正五邊形,如圖所示 三、鞏固練習 教材P115 練習1、2、3 P116 探究題、練習 四、歸納小結(jié)(學生小結(jié),老師點評) 本節(jié)課應掌握: 1正多邊和圓的有關(guān)概念:正多邊形的中心,正多邊形的半徑,正多邊形的中心角,正多邊的邊心距 2正多邊形的半徑、正多邊形的中心角、邊長、正多邊的邊心距之間的等量關(guān)系 3畫正多邊形的方法 4運用以上的知識解決實際問題 課時作業(yè)設(shè)計 一、選擇題 1如圖1所示,正六邊形ABCDEF內(nèi)接于O,則ADB的度數(shù)是( )A60° B45° C30&
6、#176; D225° (1) (2) (3)2圓內(nèi)接正五邊形ABCDE中,對角線AC和BD相交于點P,則APB的度數(shù)是( ) A36° B60° C72° D108° 3若半徑為5cm的一段弧長等于半徑為2cm的圓的周長,則這段弧所對的圓心角為( ) A18° B36° C72° D144° 二、填空題 1已知正六邊形邊長為a,則它的內(nèi)切圓面積為_ 2在ABC中,ACB=90°,B=15°,以C為圓心,CA長為半徑的圓交AB于D,如圖2所示,若AC=6,則AD的長為_ 3四邊形ABCD為O的內(nèi)接梯形,如圖3所示,ABCD,且CD為直徑,如果O的半徑等于r,C=60°,那圖中OAB的邊長AB是_;ODA的周長是_;BOC的度數(shù)是_ 三、綜合提高題1等邊ABC的邊長為a,求其內(nèi)切圓的內(nèi)接正方形DEFG的面積2如圖所示,已知O的周長等于6cm,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- J傳統(tǒng)燃油汽車品牌創(chuàng)新策略研究
- 根本違約之法定解除權(quán)
- 2024年浙江賽福特科技有限公司招聘筆試真題
- 二零二五年度員工試用期間加班費及休息日安排協(xié)議
- 二零二五年度休閑農(nóng)業(yè)園區(qū)物業(yè)用房移交與鄉(xiāng)村旅游服務(wù)協(xié)議
- 2025年度智能物流運輸補充協(xié)議
- 二零二五年度綠色環(huán)保工程中介居間合作協(xié)議
- 2025年度貧困戶殘疾人幫扶合作協(xié)議
- 二零二五年度國際郵輪租船運輸費用及乘客服務(wù)協(xié)議
- 2025年度旅游居間服務(wù)合同的法律規(guī)定與消費者權(quán)益保障
- 財務(wù)指標簡易操作計算器-小白版
- 數(shù)獨六宮格練習題
- 《自動升降跳高架》課件
- 2023CSCO腎癌診療指南
- 中醫(yī)診斷學(全套課件303P)-課件
- 裝修工程竣工驗收自評報告
- 陽臺裝修合同
- MULAND深圳蕉內(nèi)前海中心辦公室方案
- 建筑工程安全管理論文15篇建筑工程安全管理論文
- 基于三菱FX系列PLC的五層電梯控制系統(tǒng)
- 拉拔試驗原始記錄
評論
0/150
提交評論