




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、局中典型物理模型與重點(diǎn)知識(shí)歸納一.運(yùn)動(dòng)1 .紅蠟塊與玻璃管模型特征:水平方向的勻加速運(yùn)動(dòng)和豎直方向的勻速直線運(yùn)動(dòng)例題如圖所示,光滑水平桌面上,一小球以速度V向右勻速運(yùn)動(dòng),當(dāng)它經(jīng)過(guò)靠近桌邊的豎直木板ad邊前方時(shí),木板開(kāi)始做自由落體運(yùn)動(dòng)。若木板開(kāi)始運(yùn)動(dòng)時(shí),cd邊與桌面相齊,則小球在木板上的投影軌跡是(C)相當(dāng)于向上的自由落體運(yùn)動(dòng),小球在豎直方向的速度越來(lái)越大。此類(lèi)軌跡問(wèn)題應(yīng)注意水平和豎直方向速度的變化,用軌跡分解速度比較好。2 .人通過(guò)滑輪拉物體的模型(速度關(guān)聯(lián)問(wèn)題)(1)繩子牽引物體的運(yùn)動(dòng)中,物體實(shí)際在水平面上運(yùn)動(dòng),這個(gè)運(yùn)動(dòng)就是合運(yùn)動(dòng),所以物體在水平面上運(yùn)動(dòng)的速度V物是合速度,將V物按如圖所示進(jìn)
2、行分解其中:v=v物cos。,使繩子收縮v,=v物sin8,使繩子繞定滑輪上的A點(diǎn)轉(zhuǎn)動(dòng)V所以v物二COS(2)求:當(dāng)跨過(guò)B的兩段繩子夾角為a時(shí)A的運(yùn)動(dòng)速度V解法一:應(yīng)用曜*設(shè)經(jīng)過(guò)時(shí)間物體前進(jìn)的位移AsUBB,如圖所示。過(guò)B點(diǎn)作BEXBDo當(dāng)At-0時(shí),/BDB極小,在AEDB中,可以認(rèn)為DE=B在At時(shí)間內(nèi),人拉繩子的長(zhǎng)度為As2=BB+BE,由圖可知:BBBE=cos(ISBB由速度的定義:物體移動(dòng)的速度為丫物=tts2_BB+BE_BB(1+cos)人拉繩子的速度v0=t-t-tV0由解之:V物=1+cos解法二:應(yīng)用合運(yùn)動(dòng)與分運(yùn)動(dòng)的關(guān)系物體動(dòng)水平的繩也動(dòng),在滑輪下側(cè)的水平繩縮短速度和物體
3、速度相同,設(shè)為v物。根據(jù)合運(yùn)動(dòng)的概念,繩子牽引物體的運(yùn)動(dòng)中,物體實(shí)際在水平面上運(yùn)動(dòng),這個(gè)運(yùn)動(dòng)就是合運(yùn)動(dòng)。也就是與物體連接的BD繩上的速度只是一個(gè)分速度,所以上側(cè)繩縮短的速度是vcosa因此繩子上總的速度為V物+V物COS?=V0,得到v物=1+cos例題(3):如圖所示,A、B兩車(chē)通過(guò)細(xì)繩跨接在定滑輪兩側(cè),并分別選A車(chē)以速度V0向右勻速運(yùn)動(dòng),當(dāng)繩與水平面的夾角分別為a和0時(shí)解:右邊的繩子的速度等于A車(chē)沿著繩子方向的分速度,設(shè)繩子速度為將A車(chē)的速度分解為沿著繩子的方向和垂直于繩子的方向,則v=vAcos?同理,將B車(chē)的速度分解為沿著繩子方向和垂直于繩子的方向,則小光滑水平面上,若B車(chē)的速度是多少
4、?VIB產(chǎn)尸CiTiHnVoco,Vb=由于定滑輪上繩子的速度都是相同的,得到co3.過(guò)河問(wèn)題(1) .渡河時(shí)間最少:tW在河寬、船速一定時(shí),在一般情況TK渡河時(shí)間d頭的指向與河岸垂直,渡河時(shí)間最小為V,合運(yùn)動(dòng)沿(2) .位移最小若船水V船5V水sVasd船sin,顯然,當(dāng)90時(shí),即船V的方向進(jìn)行。水船cos船頭偏向上游,使得合速度垂直于河岸,位移為河寬,偏離上游的角度為若v船v水,則不論船的航向如何,總是被水沖向下游如圖所示v船cos以v水的矢尖為圓心,v船為半徑畫(huà)圓,當(dāng)v與圓相切時(shí),a角最大,根據(jù)v水船頭與河岸的夾角應(yīng)為V船 arccos-v水,船沿河漂下的最短距離為:xmin (丫水v船
5、 C0s)v船 sin4.平拋運(yùn)動(dòng)在傾角為9的斜面上以速度v0平拋一小球(如圖93所示):(1)落到斜面上的時(shí)間2v0tan 0t=;(v0sin 9 )2d 八2gcos 0(2)落到斜面上時(shí),速度的方向與水平方向的夾角5恒定,且tana=2tan0,與初速度無(wú)關(guān);(3)經(jīng)過(guò)tc=vOtan9小球距斜面最遠(yuǎn),最大距離g豎直方向的重要推論:連續(xù)相等時(shí)間t內(nèi)豎直位移之差為y=gt2(解決圖像問(wèn)題求初速度的法5.圓周運(yùn)動(dòng)(研究物體通過(guò)最高點(diǎn)和最低點(diǎn)的情況,并且經(jīng)常出現(xiàn)臨界狀態(tài)。)(詳見(jiàn)歸納本與書(shū))火車(chē)轉(zhuǎn)彎汽車(chē)過(guò)拱橋、凹橋飛機(jī)做俯沖運(yùn)動(dòng)時(shí),飛行員對(duì)座位的壓力。萬(wàn)有引力一一衛(wèi)星的運(yùn)圓錐擺火車(chē)轉(zhuǎn)彎:設(shè)火
6、車(chē)彎道處內(nèi)外軌高度差為h,內(nèi)外軌間距L,轉(zhuǎn)彎半徑R。由于外軌略高于內(nèi)軌,使得火車(chē)所受重力和支持力的合力F合提供向心力。y(是內(nèi)外軌對(duì)火車(chē)都無(wú)摩擦力的臨界條件)區(qū),當(dāng)火車(chē)行駛速率V等于V0時(shí),5合=5向,內(nèi)外軌道對(duì)輪緣都沒(méi)尸工;一二*有側(cè)壓力當(dāng)火車(chē)行駛V大于V0時(shí),F(xiàn)合f向,外軌道對(duì)輪緣有側(cè)壓力,當(dāng)火車(chē)行駛速率V小于V0時(shí),5合5向,內(nèi)軌道對(duì)輪緣有側(cè)壓力,即當(dāng)火車(chē)轉(zhuǎn)彎時(shí)行駛速率不等于V0時(shí),其向心力的變化可由內(nèi)外軌道對(duì)輪緣側(cè)壓力自行調(diào)節(jié),但調(diào)節(jié)程度不宜過(guò)大,以免損壞軌道。(火車(chē)提速靠增大軌道半徑或傾角來(lái)實(shí)現(xiàn)):、功與能模型1.利用滑輪做功的問(wèn)題。(恒力變力定滑輪動(dòng)滑輪)例(1)(定滑輪恒力)如圖
7、,利用一根跨過(guò)定滑輪的細(xì)繩,用恒力F將地面上的物體從位置拉動(dòng)到B位置,求拉力F對(duì)物體所做的功。分析:繩子拉物體的力雖然是一個(gè)大小不變,但方向時(shí)刻在發(fā)生變化的力,在高中物體中還不能直接對(duì)這種力做的功直接求解。但在繩子另一端,作用在繩子上的力卻是一個(gè)恒力,該恒力對(duì)繩子所做的功是可以直接求解的,根據(jù)繩子的特點(diǎn),繩子也必對(duì)另一端的物體做等量的功。hh11WFsF()Fh()所以sinsinsinsin例(2)(定滑輪變力)如圖,汽車(chē)以恒定的速度v牽引著細(xì)繩在水平面內(nèi)向右運(yùn)動(dòng),當(dāng)細(xì)繩和水平方向的夾角由變?yōu)闀r(shí),求汽車(chē)的牽引力做的功是多少?分析:物體向上運(yùn)動(dòng)的速度分別為:v1vcos和v2VCOs,可見(jiàn)物體
8、向上做的是變加速直線運(yùn)動(dòng),利用動(dòng)能定理求解:所以,細(xì)繩對(duì)物體做的功為:例(3)(動(dòng)滑輪恒力)一根細(xì)繩一端固定在豎直墻壁上,另一端繞過(guò)物體上的動(dòng)滑輪后施加一恒定的拉力F,已知拉力始終與水平方向成,求物體向右移動(dòng)s遠(yuǎn)的過(guò)程中,拉力對(duì)物體所做的功我們可以利用力F、力的作用點(diǎn)一一繩頭的位移si以及兩者之間夾角的余弦三者的乘積來(lái)求力F對(duì)繩所做的功也可以理解為是兩根繩分別對(duì)物體做功的代數(shù)和,即:例4如圖,保持繩頭一端的細(xì)繩豎直,用恒力F將物體沿斜面向上拉動(dòng)s遠(yuǎn),已知斜面的傾角為,求拉力對(duì)物體所做的功。分析:如果按照拉力對(duì)物體所做的功等于兩根繩的拉力對(duì)物體做功的代數(shù)和,則:(這樣的題用兩條繩分別做的功相加比
9、較簡(jiǎn)單)2.汽車(chē)啟動(dòng)問(wèn)題(書(shū)73-74)3.建模問(wèn)題(書(shū)74)重要知識(shí)點(diǎn)做功的過(guò)程是物體能量的轉(zhuǎn)化過(guò)程,做了多少功,就有多少能量發(fā)生了變化,功是能量轉(zhuǎn)化的量度.1功能定理合外力對(duì)物體做的總功-物體動(dòng)能的增量.即1212LL-W合2mv22mv1Ek2EkiEk2件勢(shì)能相關(guān)力做功導(dǎo)致與之相關(guān)的勢(shì)能變化向重力對(duì)物體所做的功-物體重力勢(shì)能增量的負(fù)值.即WG=EP1EP2=-AEP重力做正功,重力勢(shì)能減少;重力做負(fù)功,重力勢(shì)能增加.彈簧彈力彈力對(duì)物體所做的功-物體彈性勢(shì)能增量的負(fù)值.即W彈力=EP1EP2=-AEP彈力做正功,彈性勢(shì)能減少;彈力做負(fù)功,彈性勢(shì)能增加.分子力分子力對(duì)分子所做的功-分子勢(shì)能
10、增量的負(fù)值電場(chǎng)力電場(chǎng)力對(duì)電荷所做的功-電荷電勢(shì)能增量的負(fù)值電場(chǎng)力做正功,電勢(shì)能減少;電場(chǎng)力做負(fù)功,電勢(shì)能增加。注意:電荷的正負(fù)及移動(dòng)方向3制械能變化原因除重力(彈簧彈力)以外的的其它力對(duì)物體所做的功-物體機(jī)械能的增量即WF=E2E1=-AE當(dāng)除重力(或彈簧彈力)以外的力對(duì)物體所做的功為零時(shí),即機(jī)械能守恒4制械能守恒在只有重力和彈簧的彈力做功的物體系內(nèi),動(dòng)能和勢(shì)能可以互相轉(zhuǎn)化,但機(jī)械能的總量保持不定律mmv2mgh1mmv2mgh2變.即EK2+EP2=EK1+EP1,22或AEK=AEP5趟摩擦力做功的特點(diǎn)(1)靜摩擦力可以做正功,也可以做負(fù)功,還可以不做功;(2)在靜摩擦力做功的過(guò)程中,只有
11、機(jī)械能的互相轉(zhuǎn)移,而沒(méi)有機(jī)械能與其他形式的能的轉(zhuǎn)化,靜摩擦力只起著傳遞機(jī)械能的作用;(3)相互摩擦的系統(tǒng)內(nèi),一對(duì)靜摩擦力對(duì)系統(tǒng)所做功的和總是等于零.6濯?jiǎng)幽Σ亮ψ龉μ攸c(diǎn)“摩擦所產(chǎn)生的熱”(1)滑動(dòng)摩擦力可以做正功,也可以做負(fù)功,還可以不做功;=滑動(dòng)摩擦力跟物體間相對(duì)路程的乘積,即一對(duì)滑動(dòng)摩擦力所做的功(2)相互摩擦的系統(tǒng)內(nèi),一對(duì)滑動(dòng)摩擦力對(duì)系統(tǒng)所做功的和總表現(xiàn)為負(fù)功,其大小為:W=fS相對(duì)=Q對(duì)系統(tǒng)做功的過(guò)程中,系統(tǒng)的機(jī)械能轉(zhuǎn)化為其他形式的能,(S相對(duì)為相互摩擦的物體間的相對(duì)位移;若相對(duì)運(yùn)動(dòng)有往復(fù)性,則S相對(duì)為相對(duì)運(yùn)動(dòng)的路程)7尸對(duì)作用力與反作用力做功的特點(diǎn)(1)作用力做正功時(shí),反作用力可以做
12、正功,也可以做負(fù)功,還可以不做功;作用力做負(fù)功、不做功時(shí),反作用力亦同樣如此.(2)一對(duì)作用力與反作用力對(duì)系統(tǒng)所做功的總和可以是正功,也可以是負(fù)功,還可以零.動(dòng)量1.碰撞模型(1)碰撞特點(diǎn)動(dòng)量守恒碰后的動(dòng)能不可能比碰前大對(duì)追及碰撞,碰后后面物體的速度不可能大于前面物體的速度。彈性碰撞:彈性碰撞應(yīng)同時(shí)滿(mǎn)足:(1)卜)得出v1v1v2v2(這個(gè)結(jié)論最好背下來(lái),以后經(jīng)常要用到。)討論:一動(dòng)一靜且二球質(zhì)量相等時(shí)的彈性正碰:速度交換大碰小一起向前;質(zhì)量相等,速度交換;小碰大,向后返。原來(lái)以動(dòng)量(P)運(yùn)動(dòng)的物體,若其獲得等大反向的動(dòng)量時(shí),是導(dǎo)致物體靜止或反向運(yùn)動(dòng)的臨界條件。12一m2V2“一動(dòng)一靜”彈性碰
13、撞規(guī)律:即m2V2=0;2=0代入、(2)式mm22m1V1V1解得:v1=m1m2(主動(dòng)球速度下限)v2=m1m2(被碰球速度上限)討論(1):當(dāng)m1m2時(shí),v10,v20v1與v1方向一致;當(dāng)m1m2時(shí),vlyvl,v22v1(高射炮打蚊子)當(dāng)m1=m2時(shí),v1=0,v2=v1即ml與m2交換速度當(dāng)m1m2時(shí),v10v2與v1同向;當(dāng)m1m2時(shí),v2弋2v12mlm2V12m1V1一一mi、mim2f1-wm1m2 時(shí),p2yB.初動(dòng)量pi一定,由p2=m2V2=122,可見(jiàn),當(dāng)2m1v1=2p1C.初動(dòng)能EK1一定,當(dāng)m1=m2時(shí),EK2=EK1完全非彈性碰撞應(yīng)滿(mǎn)足:一動(dòng)一靜的完全非彈性
14、碰撞(子彈打擊木塊模型)是高中物理的重點(diǎn)。特點(diǎn):碰后有共同速度,或兩者的距離最大(最?。┗蛳到y(tǒng)的勢(shì)能最大等等多種說(shuō)法m1vlvm1v10(m1m2)vm1m2(主動(dòng)球速度上限,被碰球速度下限)討論:E損可用于克服相對(duì)運(yùn)動(dòng)時(shí)的摩擦力做功轉(zhuǎn)化為內(nèi)能1212mMv0一mv0(mM)vE損=fd相=mgd相=2-2=2(mM)d相22mMvomMvo=2(mM)f=2g(mM)也可轉(zhuǎn)化為彈性勢(shì)能;轉(zhuǎn)化為電勢(shì)能、電能發(fā)熱等等;(通過(guò)電場(chǎng)力或安培力做功)由上可討論彈性碰撞中主動(dòng)球、被碰球的速度取值范圍“碰撞過(guò)程”中四個(gè)有用推論u2 u1= u 1 u 2推論一:彈性碰撞前、后,雙方的相對(duì)速度大小相等,即:
15、推論二:當(dāng)質(zhì)量相等的兩物體發(fā)生彈性正碰時(shí),速度互換。推論三:完全非彈性碰撞碰后的速度相等推論四:碰撞過(guò)程受(動(dòng)量守恒)(能量不會(huì)增加)和(運(yùn)動(dòng)的合理性)三個(gè)條件的制約從動(dòng)量的角度看,子彈射入木塊過(guò)程中系統(tǒng)動(dòng)量守恒:mv0 M m v從能量的角度看,該過(guò)程系統(tǒng)損失的動(dòng)能全部轉(zhuǎn)化為系統(tǒng)的內(nèi)能。設(shè)平均阻力大小為f,設(shè)子彈、木塊的位移大小分別為si、s2,如圖所示,顯然有 s1-s2=d對(duì)子彈用動(dòng)能定理:1212mv0 mv 22對(duì)木塊用動(dòng)能定理:f、相減得:S2 mvo 21 2Mv221 .2 Mm 2一 M m v v022 M m子彈擊穿木塊時(shí),兩者速度不相等;子彈未擊穿木塊時(shí),兩者速度相等.
16、這兩種情況的臨界情況是:當(dāng)子彈從木塊一端到達(dá)另一端,相對(duì)木塊運(yùn)動(dòng)的位移等于木塊長(zhǎng)度時(shí),兩者速度相等.例題:設(shè)質(zhì)量為m的子彈以初速度v0射向靜止在光滑水平面上的質(zhì)量為M的木塊,并留在木塊中不再射出,子彈鉆入木塊深度為do求木塊對(duì)子彈的平均阻力的大小和該過(guò)程中木塊前進(jìn)的距離解析:子彈和木塊最后共同運(yùn)動(dòng),相當(dāng)于完全非彈性碰撞。2Mmv 02 M m d相比得出:式意義:fd恰好等于系統(tǒng)動(dòng)能的損失;根據(jù)能量守恒定律,系統(tǒng)動(dòng)能的損失應(yīng)該等于系統(tǒng)內(nèi)能的增加;可見(jiàn)fdQ,即兩物體由于相對(duì)運(yùn)動(dòng)而摩擦產(chǎn)生的熱(機(jī)械能轉(zhuǎn)化為內(nèi)能,等于摩擦力大小與兩物體相對(duì)滑動(dòng)的路程的乘積(由于摩擦力是耗散力,摩擦生熱跟路徑有關(guān),
17、所以這里應(yīng)該用路程,而不是用位移)。f由上式不難求得平均阻力的大?。褐劣谀緣K前進(jìn)的距離s2,可以由以上、從牛頓運(yùn)動(dòng)定律和運(yùn)動(dòng)學(xué)公式出發(fā),也可以得出同樣的結(jié)論。由于子彈和木塊都在恒力作用下做勻變速運(yùn)動(dòng),位移與平均速度成正比:般情況下m,所以s2d。這說(shuō)明在子彈射入木塊過(guò)程中木塊的位移很小,可以忽略不計(jì)。這就為分階段處理問(wèn)題提供了依據(jù)。象這種運(yùn)動(dòng)物體與靜止物體相互作用,動(dòng)量守恒,最后共同運(yùn)動(dòng)的類(lèi)型,全過(guò)程動(dòng)能的損失量可用公式:EkMm 2Vo2 M m當(dāng)子彈速度很大時(shí),可能射穿木塊,這時(shí)末狀態(tài)子彈和木塊的速度大小不再相等,但穿透過(guò)程中系統(tǒng)動(dòng)量仍然守恒,系統(tǒng)動(dòng)能損失仍然是EK=fd(這里的d為木塊的
18、厚度),但由于末狀態(tài)子彈和木塊速度不相等,所以不能再用式計(jì)算EK的大小。3.人船模型模型要點(diǎn)動(dòng)力學(xué)規(guī)律:由于組成系統(tǒng)的兩物體受到大小相同、方向相反的一對(duì)力,故兩物體速度大小與質(zhì)量成反比,方向相反。這類(lèi)問(wèn)題的特點(diǎn):兩物體同時(shí)運(yùn)動(dòng),同時(shí)停止。動(dòng)量與能量規(guī)律:由于系統(tǒng)不受外力作用,故而遵從動(dòng)量守恒定律,又由于相互作用力做功,故系統(tǒng)或每個(gè)物體動(dòng)能均發(fā)生變化:力對(duì)“人”做的功量度“人”動(dòng)能的變化;力對(duì)“船”做的功量度“船”動(dòng)能的變化。兩個(gè)推論:當(dāng)系統(tǒng)的動(dòng)量守恒時(shí),任意一段時(shí)間內(nèi)的平均動(dòng)量也守恒;當(dāng)系統(tǒng)的動(dòng)量守恒時(shí),系統(tǒng)的質(zhì)心保持原來(lái)的靜止或勻速直線運(yùn)動(dòng)狀態(tài)不變。適用范圍:動(dòng)量守恒定律雖然是由牛頓第二定律
19、推導(dǎo)得到的,但它的適用范圍比牛頓第二定律更廣泛,它既適用于宏觀也適用于微觀,既適用于低速也適用于高速。質(zhì)量為M的船停在靜止的水面上,船長(zhǎng)為L(zhǎng),一質(zhì)量為m的人,由船頭走到船尾,若不計(jì)水的阻力,則整個(gè)過(guò)程人和船相對(duì)于水面移動(dòng)的距離?分析:人船模型”是由人和船兩個(gè)物體構(gòu)成的系統(tǒng);該系統(tǒng)在人和船相互作用下各自運(yùn)動(dòng),運(yùn)動(dòng)過(guò)程中該系統(tǒng)所受到的合外力為零;即人和船組成的系統(tǒng)在運(yùn)動(dòng)過(guò)程中總動(dòng)量守恒。解答:設(shè)人在運(yùn)動(dòng)過(guò)程中,人和船相對(duì)于水面的速度分別為v和u,則由動(dòng)量守恒定律得:mv=Mu由于人在走動(dòng)過(guò)程中任意時(shí)刻人和船的速度上和U均滿(mǎn)足上述關(guān)系,所以運(yùn)動(dòng)過(guò)程中,人和船平均速度大小D和后也應(yīng)滿(mǎn)足相似的美系,即而
20、匕=25=,所以上式可以轉(zhuǎn)化為;tmx二My又有x+y=U得:x=L鹿+腹附_y=-L雁+航說(shuō)明人和船相對(duì)于水面的位移只與人和船的質(zhì)量有關(guān),與運(yùn)動(dòng)情況無(wú)關(guān)。該模型適用的條件:一個(gè)原來(lái)處于靜止?fàn)顟B(tài)的系統(tǒng),且在系統(tǒng)發(fā)生相對(duì)運(yùn)動(dòng)的過(guò)程中,至少有一個(gè)方向(如水平方向或者豎直方向)動(dòng)量守恒。四.繩、桿、彈簧1、力的方向有異1、輕繩產(chǎn)生的彈力只能沿繩并指向繩收縮的方向;2、輕彈簧產(chǎn)生的彈力只能沿彈簧的軸線方向,與彈簧發(fā)生形變的方向相反3、輕桿產(chǎn)生的彈力不一定沿桿的方向,可以是任意方向。2、力的效果有異1、輕繩只能提供拉力。2、輕桿、輕彈簧既可以提供拉力,又可以提供推力。3、力的突變性有異1、輕繩、輕桿的彈
21、力可以發(fā)生突變。2、輕彈簧的彈力在大多數(shù)情況下不能發(fā)生突變(發(fā)生漸變),極少數(shù)情況下可以發(fā)生突變。通過(guò)例題看看這些不同點(diǎn)1.一輕彈簧和一細(xì)線共同拉住一個(gè)質(zhì)量為m的小球,平衡時(shí)細(xì)線是水平的,彈簧與豎直方向的夾角是上若突然剪斷細(xì)線,則在剛剪斷的瞬間,彈簧的與拉力的大小是小球加速度的方向與豎直方向的夾角等于/若上述彈簧改為細(xì)繩,則在細(xì)線剪斷的瞬間,細(xì)繩的拉力大小是2小J%球加速度的方向與豎直方向的夾角是耳呢2解析:細(xì)線剪斷后,彈簧的形變不能馬上改變,彈力仍保持原值,大?。?:F2=mg/cos0;因重力、彈簧彈力不變,所以小球此時(shí)的加速度方向是沿水平向右的,即與豎直方向的夾角是90OB換為鋼絲,張力
22、隨外界條件的變化發(fā)生瞬時(shí)突變,如圖2所示,則沿鋼絲方向瞬態(tài)平衡TBF1mgcos;重力的分力F2使物體向最低位置運(yùn)動(dòng),即F2mgsinma?從而使物體沿圓周運(yùn)動(dòng)。小球加速度的方向與豎直方向的夾角是90-9(繩與彈簧的突變性差異)2.如圖所示,a中A、B用輕繩相連系于天花板上;b中C、D用輕桿相連置于水平面上;c中E、F用輕彈簧相連置于水平面上;d中G、H用輕彈簧相連再用輕彈簧系于天花板上,每個(gè)物體的質(zhì)量相同?,F(xiàn)在a中剪斷系于天花板的繩;在b、c中撤掉支持面;在d中剪斷系于天花板上的彈簧,則在解除外界約束的瞬間,以上四種情況中各個(gè)物體的加速度分別為多大?解析:在a、b兩種情景中,解除外界約束的瞬
23、間,輕繩、輕桿的作用力都突變?yōu)榱?,A、B、C、D均做自由落體運(yùn)動(dòng),故有aAaBacaDg。在c情景中,解除外界約束的瞬間,彈簧的彈力不能發(fā)生突變,仍為原來(lái)的值(這是由于彈簧恢復(fù)原狀需要時(shí)間),E受到的合力仍為零,F(xiàn)受到的合力為2mg,故aE0,Hf2g;在d情景中解除外界約束的瞬間,G受到的向上的彈力突變?yōu)榱?,因而受到的合力?mg,而系于G、H之間的彈簧的彈力不能發(fā)生突變,仍為原來(lái)的值,H受到的合力仍為零,故aG2g,Hh0。本題體現(xiàn)了1、輕繩、輕桿的彈力可以發(fā)生突變。2、輕彈簧的彈力在大多數(shù)情況下不能發(fā)生突變(發(fā)生漸變),極少數(shù)情況下可以發(fā)生突變。4.能量轉(zhuǎn)化有異同(難點(diǎn))1 .輕繩在沿徑
24、向張緊瞬間,在其方向上的能量耗散;2 .輕桿往往將其能量發(fā)生轉(zhuǎn)移。3 .在突變和漸變的過(guò)程中,輕彈簧將釋放或儲(chǔ)存彈性勢(shì)能,與其他形式的能之間轉(zhuǎn)移或轉(zhuǎn)化。例輕桿長(zhǎng)為L(zhǎng),一端用光滑軸。固定,另一端系一個(gè)可視為質(zhì)點(diǎn),質(zhì)量為m的小球,把小球拉至圖13所示的位置,無(wú)初速度地自由釋放到最低處B的過(guò)程中,小球做什么運(yùn)動(dòng)?到最低處時(shí)速度多大?彈力多少?若其它條件不變,把輕桿換為細(xì)繩,則釋放后小球做什么運(yùn)動(dòng)?到最低處時(shí)速度多大?彈力為多少?解析:桿與球相連,做非勻速圓周運(yùn)動(dòng),其軌跡為圓的一部分,只有重力做功,由機(jī)械能守恒,選取最低處為零勢(shì)能面,則:mgl(1 sin )1 mv2由牛頓第二定律得mg2Vbml由
25、兩式解得:mg(3 2sin )繩連接時(shí),球由A到C做自由落體運(yùn)動(dòng),A、C關(guān)于水平線對(duì)稱(chēng),設(shè)速度為vc , c且方向豎直向下,選取 C點(diǎn)為零能面,2mgl sin1 2 一mvc 2 c在C處vc c按圖示的方向分解,在繩突然拉緊的瞬間,將徑向的動(dòng)能1 2一mv22 2損耗掉,由C到B的過(guò)程中,有機(jī)械能守恒,選取 B點(diǎn)為零能面,1 一 2-mv1 mgL(1sin )1 2-mvB2 B由速度的分解得Vivc cos由牛頓第二定律得2 mvB mg - l由式解得T/3.5mgC處的ViB圖13點(diǎn)評(píng):輕桿與球相連時(shí),只有重力勢(shì)能向動(dòng)能的轉(zhuǎn)化;無(wú)能量損耗。輕繩與球相連時(shí),在繩突然拉緊的瞬間,沿徑
26、向的動(dòng)能將耗散掉,轉(zhuǎn)化為其他形式的能。5.固定輕桿與較鏈輕桿(1)固定輕桿即不可轉(zhuǎn)動(dòng)的輕桿?;男』?例1.如圖11所示,輕桿的一端固定在豎直的墻上,另一端裝有細(xì)繩繞過(guò)小滑輪一端系住一重物,另一端拴于墻壁上的P點(diǎn)?,F(xiàn)把拴于墻上P點(diǎn)的繩端向上移動(dòng),則輕桿的作用力如何變化?解析:以繩與滑輪相接觸點(diǎn)為研究對(duì)象,根據(jù)矢量的合成法則作出平行四邊形,可知兩段繩的拉力的合力變小,且與水平面間的夾角也變小。再由平衡條件可知:固定輕桿對(duì)懸繩的作用力變小,方向與水平面的夾角也變小。點(diǎn)評(píng):解本題的關(guān)鍵是抓?。狠p繩上各點(diǎn)的拉力大小相等,在P點(diǎn)繩端向上移動(dòng)的過(guò)程中,繩上拉力的大小不變,但兩段繩的拉力的夾角變大。固定輕桿作用力的方向不一定沿桿。(2)較鏈輕桿即可轉(zhuǎn)動(dòng)的輕桿例2.如圖12所示,輕桿的一端較鏈連接于墻壁上,另一端裝有一光滑的小滑輪,細(xì)繩繞過(guò)小滑輪一端系住一重物,另一端拴于墻壁上的P點(diǎn),整個(gè)系統(tǒng)處于平衡狀態(tài)。現(xiàn)把拴于墻上P點(diǎn)的繩端向上移動(dòng),并保證系統(tǒng)始終處于平衡狀態(tài),則輕桿的作用力如何變化?解析:把墻上P點(diǎn)的繩端向上移動(dòng)時(shí),輕桿的作用力始終沿桿的方向;由于兩段繩的作用力大小相等,故輕桿總是處在
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 合金污水管施工方案
- 能源行業(yè)綠色能源項(xiàng)目開(kāi)發(fā)方案
- 建設(shè)工程施工合同99
- 三農(nóng)電子商務(wù)服務(wù)模式研究手冊(cè)
- 辦公樓安裝施工方案
- 臨近魚(yú)塘安全施工方案
- 鋁板墻面施工方案
- 凹凸鏡施工方案
- 道路工程拆除施工方案
- 修路施工方案公眾號(hào)
- 軟膠囊成本結(jié)構(gòu)分析-深度研究
- 2025年安徽國(guó)防科技職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能考試題庫(kù)必考題
- 2025年中考百日誓師大會(huì)校長(zhǎng)致辭稿(一)
- 2025重慶市建筑安全員A證考試題庫(kù)
- 人教版初中數(shù)學(xué)八年級(jí)下冊(cè)全冊(cè)教案(2024年春季修訂)
- 生物產(chǎn)品檢驗(yàn)檢疫基礎(chǔ)知識(shí)單選題100道及答案
- 江蘇省中職《英語(yǔ)》學(xué)業(yè)水平考試備考試題集(含歷年真題)
- 2025年合伙型公司新合伙人加入?yún)f(xié)議
- 2025年安全員之C證(專(zhuān)職安全員)考試題庫(kù)
- 2025城市商鋪買(mǎi)賣(mài)合同書(shū)
- 醫(yī)院感染及其危害
評(píng)論
0/150
提交評(píng)論