時間序列計量經(jīng)濟(jì)學(xué)模型理論及其方法_第1頁
時間序列計量經(jīng)濟(jì)學(xué)模型理論及其方法_第2頁
時間序列計量經(jīng)濟(jì)學(xué)模型理論及其方法_第3頁
時間序列計量經(jīng)濟(jì)學(xué)模型理論及其方法_第4頁
時間序列計量經(jīng)濟(jì)學(xué)模型理論及其方法_第5頁
已閱讀5頁,還剩76頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、時間序列計量經(jīng)濟(jì)學(xué)模型理論及其方法9.1 9.1 時間序列的平穩(wěn)性及其檢驗時間序列的平穩(wěn)性及其檢驗一、問題的引出:非平穩(wěn)變量與經(jīng)典回歸一、問題的引出:非平穩(wěn)變量與經(jīng)典回歸模型模型二、時間序列數(shù)據(jù)的平穩(wěn)性二、時間序列數(shù)據(jù)的平穩(wěn)性三、平穩(wěn)性的圖示判斷三、平穩(wěn)性的圖示判斷五、單整、趨勢平穩(wěn)與差分平穩(wěn)隨機(jī)過程五、單整、趨勢平穩(wěn)與差分平穩(wěn)隨機(jī)過程一、問題的引出:非平穩(wěn)變量與經(jīng)典回歸一、問題的引出:非平穩(wěn)變量與經(jīng)典回歸模型模型常見的數(shù)據(jù)類型常見的數(shù)據(jù)類型到目前為止,經(jīng)典計量經(jīng)濟(jì)模型常用到的數(shù)據(jù)有:到目前為止,經(jīng)典計量經(jīng)濟(jì)模型常用到的數(shù)據(jù)有: 時間序列數(shù)據(jù)時間序列數(shù)據(jù)(time-series data);

2、截面數(shù)據(jù)截面數(shù)據(jù)(cross-sectional data) 平行平行/面板數(shù)據(jù)面板數(shù)據(jù)(panel data/time-series cross-section data) 時間序列數(shù)據(jù)是最常見,也是最常用到的數(shù)據(jù)時間序列數(shù)據(jù)是最常見,也是最常用到的數(shù)據(jù)。經(jīng)典回歸模型與數(shù)據(jù)的平穩(wěn)性經(jīng)典回歸模型與數(shù)據(jù)的平穩(wěn)性 經(jīng)典回歸分析暗含著一個重要假設(shè):數(shù)據(jù)是平穩(wěn)的。經(jīng)典回歸分析暗含著一個重要假設(shè):數(shù)據(jù)是平穩(wěn)的。 數(shù)據(jù)非平穩(wěn),大樣本下的統(tǒng)計推斷基礎(chǔ)數(shù)據(jù)非平穩(wěn),大樣本下的統(tǒng)計推斷基礎(chǔ)“一致性一致性”要要求求被破懷。被破懷。 經(jīng)典回歸分析的假設(shè)之一:解釋變量經(jīng)典回歸分析的假設(shè)之一:解釋變量X是非隨機(jī)變量是非隨

3、機(jī)變量 放寬該假設(shè):放寬該假設(shè):X是隨機(jī)變量,則需進(jìn)一步要求:是隨機(jī)變量,則需進(jìn)一步要求: (1)X與隨機(jī)擾動項與隨機(jī)擾動項 不相關(guān)不相關(guān) Cov(X, )=0nXXi/)(2QnXXPin)/)(2lim依概率收斂:依概率收斂: (2) 第(2)條是為了滿足統(tǒng)計推斷中大樣本下的“一致性”特性:)(limnPnxnuxxuxiiiiii/22QnxPnuxPPiiin0/lim/limlim2第(1)條是OLS估計的需要如果如果X是非平穩(wěn)數(shù)據(jù)(如表現(xiàn)出向上的趨勢),則(是非平穩(wěn)數(shù)據(jù)(如表現(xiàn)出向上的趨勢),則(2)不成立,回歸估計量不滿足不成立,回歸估計量不滿足“一致性一致性”,基于大樣本的統(tǒng),

4、基于大樣本的統(tǒng)計推斷也就遇到麻煩。計推斷也就遇到麻煩。因此:注意:在雙變量模型中:注意:在雙變量模型中: 表現(xiàn)在表現(xiàn)在:兩個本來沒有任何因果關(guān)系的變量,卻有很高的兩個本來沒有任何因果關(guān)系的變量,卻有很高的相關(guān)性相關(guān)性(有較高的R2): 例如:例如:如果有兩列時間序列數(shù)據(jù)表現(xiàn)出一致的變化趨勢(非平穩(wěn)的),即使它們沒有任何有意義的關(guān)系,但進(jìn)行回歸也可表現(xiàn)出較高的可決系數(shù)。 在現(xiàn)實經(jīng)濟(jì)生活中在現(xiàn)實經(jīng)濟(jì)生活中: 情況往往是實際的時間序列數(shù)據(jù)是非平穩(wěn)的實際的時間序列數(shù)據(jù)是非平穩(wěn)的,而且主要的經(jīng)濟(jì)變量如消費(fèi)、收入、價格往往表現(xiàn)為一致的上升或下降。這樣,仍然通過經(jīng)典的因果關(guān)系模型進(jìn)行分析,一般不會仍然通過經(jīng)

5、典的因果關(guān)系模型進(jìn)行分析,一般不會得到有意義的結(jié)果。得到有意義的結(jié)果。 數(shù)據(jù)非平穩(wěn),往往導(dǎo)致出現(xiàn)數(shù)據(jù)非平穩(wěn),往往導(dǎo)致出現(xiàn)“虛假回歸虛假回歸”問題問題 時間序列分析模型方法時間序列分析模型方法就是在這樣的情況下,以以通過揭示時間序列自身的變化規(guī)律為主線而發(fā)展起來的通過揭示時間序列自身的變化規(guī)律為主線而發(fā)展起來的全新的計量經(jīng)濟(jì)學(xué)方法論全新的計量經(jīng)濟(jì)學(xué)方法論。 時間序列分析時間序列分析已組成現(xiàn)代計量經(jīng)濟(jì)學(xué)的重要內(nèi)容,并廣泛應(yīng)用于經(jīng)濟(jì)分析與預(yù)測當(dāng)中。二、時間序列數(shù)據(jù)的平穩(wěn)性二、時間序列數(shù)據(jù)的平穩(wěn)性 時間序列分析中首先遇到的問題首先遇到的問題是關(guān)于時間序列數(shù)據(jù)的平穩(wěn)性平穩(wěn)性問題。 假定某個時間序列是由某

6、一隨機(jī)過程(假定某個時間序列是由某一隨機(jī)過程(stochastic process)生成的,即假定時間序列)生成的,即假定時間序列Xt(t=1, 2, )的每)的每一個數(shù)值都是從一個概率分布中隨機(jī)得到,如果滿足下一個數(shù)值都是從一個概率分布中隨機(jī)得到,如果滿足下列條件:列條件: 1)均值)均值E(XE(Xt t)=)= 是是與時間與時間t 無關(guān)的常數(shù);無關(guān)的常數(shù); 2)方差)方差Var(XVar(Xt t)=)= 2 2是是與時間與時間t 無關(guān)的常數(shù);無關(guān)的常數(shù); 3)協(xié)方差)協(xié)方差Cov(XCov(Xt t,X,Xt+kt+k)=)= k k 是是只與時期間隔只與時期間隔k有關(guān),與有關(guān),與時間

7、時間t 無關(guān)的常數(shù);無關(guān)的常數(shù); 則稱該隨機(jī)時間序列是平穩(wěn)的(則稱該隨機(jī)時間序列是平穩(wěn)的(stationary),而該隨機(jī),而該隨機(jī)過程是一平穩(wěn)隨機(jī)過程(過程是一平穩(wěn)隨機(jī)過程(stationary stochastic process)。)。 例例1一個最簡單的隨機(jī)時間序列是一具有零均值同方差的獨(dú)立分布序列: Xt=t , tN(0,2) 例例2另一個簡單的隨機(jī)時間列序被稱為隨機(jī)游走隨機(jī)游走(random walk),該序列由如下隨機(jī)過程生成: Xt=Xt-1+t這里, t是一個白噪聲。該序列常被稱為是一個白噪聲(白噪聲(white noise)。 由于Xt具有相同的均值與方差,且協(xié)方差為零,

8、由定義,一一個白噪聲序列是平穩(wěn)的個白噪聲序列是平穩(wěn)的。 為了檢驗該序列是否具有相同的方差,可假設(shè)Xt的初值為X0,則易知 X1=X0+1 X2=X1+2=X0+1+2 X Xt t=X=X0 0+ +1+2+t 由于X0為常數(shù),t是一個白噪聲,因此Var(Xt)=t2 即即Xt的方差與時間的方差與時間t t有關(guān)而非常數(shù),它是一非平穩(wěn)序列。有關(guān)而非常數(shù),它是一非平穩(wěn)序列。 容易知道該序列有相同的均值均值:E(Xt)=E(Xt-1) 然而,對X取一階差分一階差分(first difference): Xt=Xt-Xt-1=t由于t是一個白噪聲,則序列Xt是平穩(wěn)的。 后面將會看到后面將會看到: :如

9、果一個時間序列是非平穩(wěn)的,它常如果一個時間序列是非平穩(wěn)的,它常常可通過取差分的方法而形成平穩(wěn)序列。常可通過取差分的方法而形成平穩(wěn)序列。 事實上,隨機(jī)游走過程是下面我們稱之為事實上,隨機(jī)游走過程是下面我們稱之為1 1階自回歸階自回歸AR(1)AR(1)過程的特例過程的特例 X Xt t= = X Xt-1t-1+ +t 不難驗證不難驗證:1)| |1|1時,該隨機(jī)過程生成的時間序列是發(fā)散時,該隨機(jī)過程生成的時間序列是發(fā)散的,表現(xiàn)為持續(xù)上升的,表現(xiàn)為持續(xù)上升( 1)1)或持續(xù)下降或持續(xù)下降( -1)-1),因此是非,因此是非平穩(wěn)的;平穩(wěn)的; 第二節(jié)中將證明第二節(jié)中將證明:只有當(dāng)只有當(dāng)-1-1 10

10、,樣本自相關(guān)系數(shù)近似地服從以,樣本自相關(guān)系數(shù)近似地服從以0為均值,為均值,1/n 為方差的正態(tài)分布,其中為方差的正態(tài)分布,其中n為樣本數(shù)。為樣本數(shù)。 也可檢驗對所有也可檢驗對所有k0k0,自相關(guān)系數(shù)都為,自相關(guān)系數(shù)都為0 0的聯(lián)合假設(shè),的聯(lián)合假設(shè),這可通過如下這可通過如下Q QLBLB統(tǒng)計量進(jìn)行:統(tǒng)計量進(jìn)行: 該統(tǒng)計量近似地服從自由度為m的2分布(m為滯后長度)。 因此:如果計算的如果計算的Q Q值大于顯著性水平值大于顯著性水平為為 的臨界值,則有的臨界值,則有1-1- 的把握拒絕所有的把握拒絕所有 k k(k0)(k0)同時為同時為0 0的假設(shè)。的假設(shè)。 例例3: 3: 序列序列Random

11、1Random1是通過一隨機(jī)過程是通過一隨機(jī)過程(隨機(jī)函數(shù))生成的有(隨機(jī)函數(shù))生成的有1919個樣本的隨機(jī)時個樣本的隨機(jī)時間序列。間序列。 容易驗證:該樣本序列的均值為該樣本序列的均值為0 0,方差為,方差為0.07890.0789。 從圖形看:它在其樣本均值它在其樣本均值0 0附近上下波動,且樣本自相關(guān)系數(shù)附近上下波動,且樣本自相關(guān)系數(shù)迅速下降到迅速下降到0 0,隨后在,隨后在0 0附近波動且逐漸收斂于附近波動且逐漸收斂于0 0。 由于該序列由一隨機(jī)過程生成,可以認(rèn)為不存在序列相關(guān)性,因此該序列為一白噪聲。該序列為一白噪聲。 根據(jù)Bartlett的理論:kN(0,1/19) 因此任一rk(

12、k0)的95%的置信區(qū)間都將是 可以看出可以看出:k0:k0時,時,r rk k的值確實落在了該區(qū)間內(nèi),因的值確實落在了該區(qū)間內(nèi),因此可以接受此可以接受 k k( (k0)k0)為為0 0的假設(shè)的假設(shè)。 同樣地,從從Q QLBLB統(tǒng)計量的計算值看,滯后統(tǒng)計量的計算值看,滯后1717期的計算期的計算值為值為26.3826.38,未超過,未超過5%5%顯著性水平的臨界值顯著性水平的臨界值27.5827.58,因此,因此, ,可以接受所有的自相關(guān)系數(shù)可以接受所有的自相關(guān)系數(shù) k k( (k0)k0)都為都為0 0的假設(shè)。的假設(shè)。 因此,該隨機(jī)過程是一個平穩(wěn)過程。該隨機(jī)過程是一個平穩(wěn)過程。 序列Ran

13、dom2是由一隨機(jī)游走過程 Xt=Xt-1+t 生成的一隨機(jī)游走時間序列樣本。其中,第0項取值為0, t是由Random1表示的白噪聲。 樣本自相關(guān)系數(shù)顯示樣本自相關(guān)系數(shù)顯示:r1=0.48,落在了區(qū)間-0.4497, 0.4497之外,因此在5%的顯著性水平上拒絕1的真值為0的假設(shè)。 該隨機(jī)游走序列是非平穩(wěn)的。該隨機(jī)游走序列是非平穩(wěn)的。 圖形表示出:圖形表示出:該序列具有相同的均值,但從樣本自相關(guān)圖看,雖然自相關(guān)系數(shù)迅速下降到0,但隨著時間的推移,則在0附近波動且呈發(fā)散趨勢。利用利用EviewsEviews計算計算r r和和Q Q利用利用EviewsEviews計算計算r r和和Q Q利用利

14、用EviewsEviews計算計算r r和和Q Q例例4. 檢驗中國支出法GDP時間序列的平穩(wěn)性。 圖形:表現(xiàn)出了一個持續(xù)上升的過程,可圖形:表現(xiàn)出了一個持續(xù)上升的過程,可初步判斷是非平穩(wěn)的。初步判斷是非平穩(wěn)的。 樣本自相關(guān)系數(shù):緩慢下降,再次表明它樣本自相關(guān)系數(shù):緩慢下降,再次表明它的非平穩(wěn)性。的非平穩(wěn)性。 拒絕:拒絕:該時間序列的自相關(guān)系數(shù)在滯后1期之后的值全部為0的假設(shè)。 結(jié)論結(jié)論:19782000年間中國GDP時間序列是非平穩(wěn)序列。從滯后從滯后18期的期的QLB統(tǒng)計量看:統(tǒng)計量看: QLB(18)=57.1828.86=20.05 例例5. 5. 檢驗人均居民消費(fèi)與人均國內(nèi)生產(chǎn)總值時間

15、序列的平穩(wěn)性。 原圖 樣本自相關(guān)圖 從圖形上看:從圖形上看:人均居民消費(fèi)(CPC)與人均國內(nèi)生產(chǎn)總值(GDPPC)是非平穩(wěn)的是非平穩(wěn)的。 從滯后從滯后1414期的期的QLB統(tǒng)計量看:統(tǒng)計量看: CPC與GDPPC序列的統(tǒng)計量計算值均為57.18,超過了顯著性水平為5%時的臨界值23.68。再次表明它們的表明它們的非平穩(wěn)性。非平穩(wěn)性。 就此來說,運(yùn)用傳統(tǒng)的回歸方法建立它們的回歸就此來說,運(yùn)用傳統(tǒng)的回歸方法建立它們的回歸方程是無實際意義的。方程是無實際意義的。 不過,第三節(jié)中將看到,如果兩個非平穩(wěn)時間序不過,第三節(jié)中將看到,如果兩個非平穩(wěn)時間序列是協(xié)整的,則傳統(tǒng)的回歸結(jié)果卻是有意義的,而這列是協(xié)整

16、的,則傳統(tǒng)的回歸結(jié)果卻是有意義的,而這兩時間序列恰是協(xié)整的。兩時間序列恰是協(xié)整的。 四、平穩(wěn)性的單位根檢驗四、平穩(wěn)性的單位根檢驗 對時間序列的平穩(wěn)性除了通過圖形直觀判斷外,運(yùn)用統(tǒng)計量進(jìn)行統(tǒng)計檢驗則是更為準(zhǔn)確與重要的。 單位根檢驗(單位根檢驗(unit root test)是統(tǒng)計檢驗中普遍應(yīng)用的一種檢驗方法。1 1、DFDF檢驗檢驗我們已知道,隨機(jī)游走序列 Xt=Xt-1+t是非平穩(wěn)的,其中t是白噪聲。而該序列可看成是隨機(jī)模型 Xt=Xt-1+t中參數(shù)=1時的情形。也就是說,我們對式 Xt=Xt-1+t (*) 做回歸,如果確實發(fā)現(xiàn)=1,就說隨機(jī)變量Xt有一個單位根。單位根。 (*)式可變形式成

17、差分形式: Xt=(1-)Xt-1+ t =Xt-1+ t (*)檢驗(*)式是否存在單位根=1,也可通過(*)式判斷是否有 =0。 一般地一般地: : 檢驗一個時間序列檢驗一個時間序列XtXt的平穩(wěn)性,可通過檢驗帶的平穩(wěn)性,可通過檢驗帶有截距項的一階自回歸模型有截距項的一階自回歸模型 X Xt t= = + + X Xt-1t-1+ + t t (* *)中的參數(shù)中的參數(shù) 是否小于是否小于1 1。 或者:檢驗其等價變形式或者:檢驗其等價變形式 X Xt t= = + + X Xt-1t-1+ + t t (* * *)中的參數(shù)中的參數(shù) 是否小于是否小于0 0 。 在第二節(jié)中將證明,(*)式中

18、的參數(shù) 11或或 =1=1時,時間時,時間序列是非平穩(wěn)的序列是非平穩(wěn)的; ; 對應(yīng)于(*)式,則是 00或或 = =0。 因此,針對式 X Xt t= = + + X Xt-1t-1+ + t t 我們關(guān)心的檢驗為:零假設(shè)零假設(shè) H0: =0。 備擇假設(shè)備擇假設(shè) H1: 0 上述檢驗可通過上述檢驗可通過OLS法下的法下的t檢驗完成。檢驗完成。 然而,在零假設(shè)(序列非平穩(wěn))下,即使在大樣本下t統(tǒng)計量也是有偏誤的(向下偏倚),通常的t 檢驗無法使用。 Dicky和Fuller于1976年提出了這一情形下t統(tǒng)計量服從的分布(這時的t統(tǒng)計量稱為 統(tǒng)計量統(tǒng)計量),即DF分布分布(見表9.1.3)。由于t

19、統(tǒng)計量的向下偏倚性,它呈現(xiàn)圍繞小于零值的偏態(tài)分布。 因此,可通過OLS法估計 X Xt t= = + + X Xt-1t-1+ + t t 并計算t統(tǒng)計量的值,與DF分布表中給定顯著性水平下的臨界值比較: 如果:如果:t臨界值,則拒絕零假設(shè)臨界值,則拒絕零假設(shè)H0: =0,認(rèn)為時間序列不存在單位根,是平穩(wěn)的。認(rèn)為時間序列不存在單位根,是平穩(wěn)的。 注意:在不同的教科書上有不同的描述,但是結(jié)注意:在不同的教科書上有不同的描述,但是結(jié)果是相同的。果是相同的。例如:例如:“如果計算得到的如果計算得到的t統(tǒng)計量的絕對值大于臨界值統(tǒng)計量的絕對值大于臨界值的絕對值,則拒絕的絕對值,則拒絕=0”的假設(shè),原序列

20、不存在單位的假設(shè),原序列不存在單位根,為平穩(wěn)序列。根,為平穩(wěn)序列。 進(jìn)一步的問題進(jìn)一步的問題:在上述使用 X Xt t= = + + X Xt-1t-1+ + t t對時間序列進(jìn)行平穩(wěn)性檢驗中,實際上假定了時間序列是由具有實際上假定了時間序列是由具有白噪聲隨機(jī)誤差項的一階自回歸過程白噪聲隨機(jī)誤差項的一階自回歸過程AR(1)生成的。生成的。 但在實際檢驗中,時間序列可能由更高階的自回歸過程生成的,但在實際檢驗中,時間序列可能由更高階的自回歸過程生成的,或者隨機(jī)誤差項并非是白噪聲或者隨機(jī)誤差項并非是白噪聲,這樣用OLS法進(jìn)行估計均會表現(xiàn)出法進(jìn)行估計均會表現(xiàn)出隨機(jī)誤差項出現(xiàn)自相關(guān)隨機(jī)誤差項出現(xiàn)自相關(guān)

21、(autocorrelation),導(dǎo)致DF檢驗無效。 另外另外,如果時間序列包含有明顯的隨時間變化的某種趨勢(如上升或下降),則也容易導(dǎo)致上述檢驗中的自相關(guān)隨機(jī)誤差自相關(guān)隨機(jī)誤差項問題項問題。 為了保證DF檢驗中隨機(jī)誤差項的白噪聲特性,Dicky和Fuller對DF檢驗進(jìn)行了擴(kuò)充,形成了ADF(Augment Dickey-Fuller )檢驗)檢驗。 2 2、ADFADF檢驗檢驗ADF檢驗是通過下面三個模型完成的:檢驗是通過下面三個模型完成的: 模型模型3 中的中的t是時間變量是時間變量,代表了時間序列隨時間變化的某種趨勢(如果有的話)。 檢驗的假設(shè)都是:針對檢驗的假設(shè)都是:針對H1: 臨

22、界值,不能拒絕存在單位根的零假設(shè)。臨界值,不能拒絕存在單位根的零假設(shè)。時間T的t統(tǒng)計量小于ADF分布表中的臨界值,因此不能拒絕不存在不能拒絕不存在趨勢項的零假設(shè)趨勢項的零假設(shè)。需進(jìn)一步檢驗?zāi)P托柽M(jìn)一步檢驗?zāi)P? 。2)經(jīng)試驗,模型2中滯后項取2階: LM檢驗表明模型殘差不存在自相關(guān)性,因此該模型的設(shè)定是正確的。 從GDPt-1的參數(shù)值看,其t統(tǒng)計量為正值,大于臨界值,不能不能拒絕存在單位根的零假設(shè)拒絕存在單位根的零假設(shè)。 常數(shù)項的t統(tǒng)計量小于AFD分布表中的臨界值,不能拒絕不存不能拒絕不存常數(shù)項的零假設(shè)。常數(shù)項的零假設(shè)。需進(jìn)一步檢驗?zāi)P?。3)經(jīng)試驗,模型1中滯后項取2階: LM檢驗表明模型殘

23、差項不存在自相關(guān)性,因此模型的設(shè)定是正確的。 從GDPt-1的參數(shù)值看,其t統(tǒng)計量為正值,大于臨界值,不能拒絕存在單位根的零假設(shè)。不能拒絕存在單位根的零假設(shè)。 可斷定中國支出法可斷定中國支出法GDP時間序列是非平穩(wěn)的。時間序列是非平穩(wěn)的。 例例7. 檢驗人均居民消費(fèi)與人均國內(nèi)生產(chǎn)總值時間序列的平穩(wěn)性。 1)對中國人均國內(nèi)生產(chǎn)總值中國人均國內(nèi)生產(chǎn)總值GDPPC來說,經(jīng)過償試,三個模型的適當(dāng)形式分別為 三個模型中參數(shù)的估計值的t統(tǒng)計量均大于各自的臨界值,因此不能拒絕存在單位根的零假設(shè)不能拒絕存在單位根的零假設(shè)。 結(jié)論:人均國內(nèi)生產(chǎn)總值(人均國內(nèi)生產(chǎn)總值(GDPPC)是非平穩(wěn)的。)是非平穩(wěn)的。2)對

24、于人均居民消費(fèi)CPC時間序列來說,三個模型的適當(dāng)形式為 三個模型中參數(shù)CPCt-1的t統(tǒng)計量的值均比ADF臨界值表中各自的臨界值大,不能拒絕該時間序列存不能拒絕該時間序列存在單位根的假設(shè)在單位根的假設(shè), 因此,可判斷人均居民消費(fèi)序列可判斷人均居民消費(fèi)序列CPC是非平穩(wěn)的。是非平穩(wěn)的。ADFADF檢驗在檢驗在EviewsEviews中的實現(xiàn)中的實現(xiàn)ADFADF檢驗在檢驗在EviewsEviews中的實現(xiàn)中的實現(xiàn)ADFADF檢驗在檢驗在EviewsEviews中的實現(xiàn)中的實現(xiàn)GDPPGDPPADFADF檢驗在檢驗在EviewsEviews中的實現(xiàn)中的實現(xiàn)GDPPGDPP從從GDPP(-1)的參的參

25、數(shù)值看,其數(shù)值看,其t統(tǒng)計統(tǒng)計量的值大于臨界量的值大于臨界值(單尾),不值(單尾),不能拒絕存在單位能拒絕存在單位根的零假設(shè)。同根的零假設(shè)。同時,由于時間項時,由于時間項T的的t統(tǒng)計量也小于統(tǒng)計量也小于ADF分布表中的分布表中的臨界值(雙尾),臨界值(雙尾),因此不能拒絕不因此不能拒絕不存在趨勢項的零存在趨勢項的零假設(shè)。需進(jìn)一步假設(shè)。需進(jìn)一步檢驗?zāi)P蜋z驗?zāi)P? 。 ADFADF檢驗在檢驗在EviewsEviews中的實現(xiàn)中的實現(xiàn)GDPPGDPPADFADF檢驗在檢驗在EviewsEviews中的實現(xiàn)中的實現(xiàn)GDPPGDPP從從GDPP(-1)的的參數(shù)值看,其參數(shù)值看,其t統(tǒng)計量的值大于統(tǒng)計量的

26、值大于臨界值(單尾),臨界值(單尾),不能拒絕存在單不能拒絕存在單位根的零假設(shè)。位根的零假設(shè)。同時,由于常數(shù)同時,由于常數(shù)項的項的t統(tǒng)計量也統(tǒng)計量也小于小于ADF分布分布表中的臨界值表中的臨界值(雙尾),因此(雙尾),因此不能拒絕不存在不能拒絕不存在趨勢項的零假設(shè)。趨勢項的零假設(shè)。需進(jìn)一步檢驗?zāi)P柽M(jìn)一步檢驗?zāi)P托?。 ADFADF檢驗在檢驗在EviewsEviews中的實現(xiàn)中的實現(xiàn)GDPPGDPPADFADF檢驗在檢驗在EviewsEviews中的實現(xiàn)中的實現(xiàn)GDPPGDPP從從GDPP(-1)的的參數(shù)值看,其參數(shù)值看,其t統(tǒng)計量的值大統(tǒng)計量的值大于臨界值(單于臨界值(單尾),不能拒尾),不能

27、拒絕存在單位根絕存在單位根的零假設(shè)。至的零假設(shè)。至此,可斷定此,可斷定GDPP時間序列時間序列是非平穩(wěn)的。是非平穩(wěn)的。 ADFADF檢驗在檢驗在EviewsEviews中的實現(xiàn)中的實現(xiàn)GDPPGDPPADFADF檢驗在檢驗在EviewsEviews中的實現(xiàn)中的實現(xiàn)GDPPGDPP從從GDPP(-1)的參數(shù)的參數(shù)值看,其值看,其t統(tǒng)計量的值統(tǒng)計量的值大于臨界值(單尾),大于臨界值(單尾),不能拒絕存在單位根不能拒絕存在單位根的零假設(shè)。同時,由的零假設(shè)。同時,由于時間項項于時間項項T的的t統(tǒng)計量統(tǒng)計量也小于也小于AFD分布表中分布表中的臨界值(雙尾),的臨界值(雙尾),因此不能拒絕不存在因此不能拒

28、絕不存在趨勢項的零假設(shè)。需趨勢項的零假設(shè)。需進(jìn)一步檢驗?zāi)P瓦M(jìn)一步檢驗?zāi)P? 。在。在1%置信度下。置信度下。 ADFADF檢驗在檢驗在EviewsEviews中的實現(xiàn)中的實現(xiàn)GDPPGDPP 如果將置信度從如果將置信度從1%1%降低至降低至10%10%,將拒絕存在單位根和不存,將拒絕存在單位根和不存在時間趨勢項的假設(shè),得到在時間趨勢項的假設(shè),得到GDPPGDPP是平穩(wěn)序列的結(jié)論,是平穩(wěn)序列的結(jié)論,進(jìn)而得到進(jìn)而得到GDPPGDPP是是I(1)I(1)序列。序列。ADFADF檢驗在檢驗在EviewsEviews中的實現(xiàn)中的實現(xiàn)GDPPGDPP從從GDPP(-1)的參的參數(shù)值看,其統(tǒng)計量數(shù)值看,其統(tǒng)

29、計量的值大于臨界值的值大于臨界值(單尾),不能拒(單尾),不能拒絕存在單位根的零絕存在單位根的零假設(shè)。同時,由于假設(shè)。同時,由于常數(shù)項的常數(shù)項的t統(tǒng)計量也統(tǒng)計量也小于小于AFD分布表中分布表中的臨界值(雙尾),的臨界值(雙尾),因此不能拒絕不存因此不能拒絕不存在趨勢項的零假設(shè)。在趨勢項的零假設(shè)。需進(jìn)一步檢驗?zāi)P托柽M(jìn)一步檢驗?zāi)P?。ADFADF檢驗在檢驗在EviewsEviews中的實現(xiàn)中的實現(xiàn)GDPPGDPP從從GDPP(-1)的參數(shù)值看,的參數(shù)值看,其統(tǒng)計量的值其統(tǒng)計量的值大于臨界值大于臨界值(單尾),不(單尾),不能拒絕存在單能拒絕存在單位根的零假設(shè)。位根的零假設(shè)。至此,可斷定至此,可斷定

30、GDPP時間時間序列是非平穩(wěn)序列是非平穩(wěn)的。的。 ADFADF檢驗在檢驗在EviewsEviews中的實現(xiàn)中的實現(xiàn)2 2GDPPGDPPADFADF檢驗在檢驗在EviewsEviews中的實現(xiàn)中的實現(xiàn)2 2GDPPGDPPADFADF檢驗在檢驗在EviewsEviews中的實現(xiàn)中的實現(xiàn)2 2GDPPGDPPADFADF檢驗在檢驗在EviewsEviews中的實現(xiàn)中的實現(xiàn)2 2GDPPGDPP從從2GDPP(-1)的參數(shù)值看,的參數(shù)值看,其統(tǒng)計量的值其統(tǒng)計量的值小于臨界值小于臨界值(單尾),拒(單尾),拒絕存在單位根絕存在單位根的零假設(shè)。至的零假設(shè)。至此,可斷定此,可斷定2GDPP時間時間序列是

31、平穩(wěn)的。序列是平穩(wěn)的。GDPP是是I(2)過程。過程。 五、單整、趨勢平穩(wěn)與差分平穩(wěn)隨機(jī)過五、單整、趨勢平穩(wěn)與差分平穩(wěn)隨機(jī)過程程 隨機(jī)游走序列 Xt=Xt-1+t經(jīng)差分后等價地變形為 Xt=t 由于t是一個白噪聲,因此差分后的序列差分后的序列 Xt是是平穩(wěn)的。平穩(wěn)的。單整單整 一般地,如果一個時間序列經(jīng)過一般地,如果一個時間序列經(jīng)過d次差分后變成平穩(wěn)序列,則稱原次差分后變成平穩(wěn)序列,則稱原序列是序列是d 階單整(階單整(integrated of d)序列,記為)序列,記為I(d)。 顯然,I(0)代表一平穩(wěn)時間序列。代表一平穩(wěn)時間序列?,F(xiàn)實經(jīng)濟(jì)生活中現(xiàn)實經(jīng)濟(jì)生活中:1)只有少數(shù)經(jīng)濟(jì)指標(biāo)的時間

32、序列表現(xiàn)為平穩(wěn)的,如利率等只有少數(shù)經(jīng)濟(jì)指標(biāo)的時間序列表現(xiàn)為平穩(wěn)的,如利率等;2)大多數(shù)指標(biāo)的時間序列是非平穩(wěn)的,如一些價格指數(shù)常常是大多數(shù)指標(biāo)的時間序列是非平穩(wěn)的,如一些價格指數(shù)常常是2階階單整的,以不變價格表示的消費(fèi)額、收入等常表現(xiàn)為單整的,以不變價格表示的消費(fèi)額、收入等常表現(xiàn)為1階單整。階單整。大多數(shù)非平穩(wěn)的時間序列一般可通過一次或多次差分的形式變大多數(shù)非平穩(wěn)的時間序列一般可通過一次或多次差分的形式變?yōu)槠椒€(wěn)的。為平穩(wěn)的。但也有一些時間序列,無論經(jīng)過多少次差分,都不能變?yōu)槠椒€(wěn)的。但也有一些時間序列,無論經(jīng)過多少次差分,都不能變?yōu)槠椒€(wěn)的。這種序列被稱為非單整的(這種序列被稱為非單整的(non-

33、integrated)。 如果一個時間序列經(jīng)過一次差分變成平穩(wěn)的,就稱原序列是一階如果一個時間序列經(jīng)過一次差分變成平穩(wěn)的,就稱原序列是一階單整(單整(integrated of 1)序列,記為)序列,記為I(1)。例例8. 中國支出法GDP的單整性。經(jīng)過試算,發(fā)現(xiàn)中國支出法中國支出法GDP是是1階單整的階單整的,適當(dāng)?shù)臋z驗?zāi)P蜑槔?. 中國人均居民消費(fèi)與人均國內(nèi)生產(chǎn)總值的單整性。經(jīng)過試算,發(fā)現(xiàn)中國人均國內(nèi)生產(chǎn)總值中國人均國內(nèi)生產(chǎn)總值GDPPC是是2階單整的階單整的,適當(dāng)?shù)臋z驗?zāi)P蜑?同樣地,CPC也是也是2階單整的階單整的,適當(dāng)?shù)臋z驗?zāi)P蜑?趨勢平穩(wěn)與差分平穩(wěn)隨機(jī)過程趨勢平穩(wěn)與差分平穩(wěn)隨機(jī)過程 前文已指出,一些非平穩(wěn)的經(jīng)濟(jì)時間序列往往表現(xiàn)出共同的變化趨勢,而這些序列間本身不一定有直接的關(guān)聯(lián)關(guān)系,這時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論