保險精算(三)_第1頁
保險精算(三)_第2頁
保險精算(三)_第3頁
保險精算(三)_第4頁
保險精算(三)_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、生命表函數(shù)與生命表構(gòu)造第三章本章重點n生命表函數(shù)n生存函數(shù)n剩余壽命n死亡效力n生命表的構(gòu)造n有關(guān)壽命分布的參數(shù)模型n生命表的起源n生命表的構(gòu)造n選擇與終極生命表n有關(guān)分?jǐn)?shù)年齡的三種假定第一節(jié)生命表函數(shù)分布函數(shù)n一個人的壽命從出生到死亡的時間長度,是無法事先確定的,在概率上稱之為隨機(jī)變量,記為X。是連續(xù)型隨機(jī)變量。 Pr0XXF xXxx 用用表表示示出出生生嬰嬰兒兒未未來來壽壽命命的的隨隨機(jī)機(jī)變變量量,則則 的的分分布布函函數(shù)數(shù)00 xx 即即 歲歲的的人人在在 歲歲之之前前死死亡亡的的概概率率。 ,0XfxfxFxx 的的概概率率密密度度函函數(shù)數(shù)記記為為則則, 50X 那那么么P Pr r

2、表表示示什什么么?5050 x表表示示 歲歲的的人人在在歲歲以以后后死死亡亡的的概概率率,即即在在歲歲仍仍然然生生存存的的概概率率。 Pr501Pr50150XXF ()Pr xXxt Xx表表示示什什么么?xxxt 表表示示活活到到 歲歲的的人人在在 之之間間死死亡亡的的概概率率,即即 PrPr1Pr1XxtXxXxF xtF xF x ()Pr()PrPr xXxt XxxXxtXxXx 0E Xxf x dx生存函數(shù)n定義n意義:新生兒能活到 歲的概率。n與分布函數(shù)的關(guān)系:n與密度函數(shù)的關(guān)系:n新生兒將在x歲至z歲之間死亡的概率:( )Pr()S xXx)(1)(xFxS)()(xSxf

3、xPr()( )( )xXzs xs z剩余壽命n定義:已經(jīng)活到x歲的人(簡記(x)),還能繼續(xù)存活的時間,稱為剩余壽命,記作T(x)。nT分布函數(shù)記為 ( ()()1( )()( )TFtPr T XtPr xXxt XxF xtF xF xs xs xts x TFt ,TTTs xtTftftFts x 的概率密度函數(shù)記為 T x在精算學(xué)中,用國際通用的符號來表示有關(guān)的各種概率。 ( ()()txqPr T XtPr xXxt Xxs xs xts x Pr,0txqT xttxxt用表示 歲的人在歲以前死亡的概率剩余壽命n剩余壽命的生存函數(shù) :n特別:txpPr( ( )Pr()()(

4、 )txpT xtXxt Xxs xts x0( )xps xxxt表示 歲的人在歲仍活著的概率。剩余壽命n :x歲的人至少能活到x+1歲的概率n :x歲的人將在1年內(nèi)去世的概率n :X歲的人活過t年后在往后u年內(nèi)去世的概率即在xt歲到xtu歲之間死亡的概率。 xpxqxt uq1xxpp1xxqq PrPrxt ut uxtxtxt uxqPr tT xtuT xtuT xtqqpp 整值剩余壽命n定義: 未來存活的完整年數(shù),簡記n概率函數(shù)( )x( )K x(),( )1,0,1,K XkkT xkk 11Pr()Pr( )1)Pr( )1)Pr( )1PrkxkxkxkxK XkkT x

5、kkT xkT xkT xkqqpp剩余壽命的期望與方差n期望剩余壽命: 剩余壽命的期望值(均值),簡記( )x 00000000( ( )()()oxTtxtxtxtxtxtxsxteE T xtft dttdts xtpdtt pp dtt pp dtp dt oxe剩余壽命的期望與方差n剩余壽命的方差2220( ( )( ( ) )( )2otxxVar T xE T xE T xtp dte整值剩余壽命的期望與方差n期望整值剩余壽命: 整值剩余壽命的期望值(均值),簡記( )x1012233412310( )()23xkxkxkxxxxxxxxxkxkeE K xkpppppppppp

6、ppxe整值剩余壽命的期望與方差n整值剩余壽命的方差22210( )()()(21)kxxkVar K xE KEKkpe死亡效力n定義: 的瞬時死亡率,簡記n死亡效力與生存函數(shù)的關(guān)系( )xx( )( )ln ( )( )( )xs xf xs xs xs x 死亡效力與生存函數(shù)的關(guān)系 000000lnln,lnxyxxyxxxyydydys ydys ydys xdys xe 兩邊積分, 00 x tx tyyxxydydytxdys xtepes xe從而,死亡效力n死亡效力與密度函數(shù)的關(guān)系 0 xsdsxxf xs xe第二節(jié)生命表的構(gòu)造有關(guān)壽命分布的參數(shù)模型 nDe Moivre模型

7、(1729) nGompertze模型(1825)1( )1 , 0 xxxs xx ( )exp(1)/ln , B0,c1,0 xxxBcs xB ccx有關(guān)壽命分布的參數(shù)模型 nMakeham模型(1860)nWeibull模型(1939)( )exp(1)/ln , B0,A-B,c 1,0 xxxA Bcs xAxB ccx1( )exp/(1) , 0,0,0nxnkxs xkxnknx參數(shù)模型的問題n至今為止找不到非常合適的壽命分布擬合模型。這四個常用模型的擬合效果不令人滿意。n使用這些參數(shù)模型推測未來的壽命狀況會產(chǎn)生很大的誤差n壽險中通常不使用參數(shù)模型擬合壽命分布,而是使用非參

8、數(shù)方法確定的生命表擬合人類壽命的分布。n在非壽險領(lǐng)域,常用參數(shù)模型擬合物體壽命的分布。生命表起源n生命表的定義n根據(jù)已往一定時期內(nèi)各種年齡的死亡統(tǒng)計資料編制成的由每個年齡死亡率所組成的匯總表.n生命表的發(fā)展歷史n1662年,Jone Graunt,根據(jù)倫敦瘟疫時期的洗禮和死亡名單,寫過生命表的自然和政治觀察。這是生命表的最早起源。n1693年,Edmund Halley,根據(jù)Breslau城出生與下葬統(tǒng)計表對人類死亡程度的估計,在文中第一次使用了生命表的形式給出了人類死亡年齡的分布。人們因而把Halley稱為生命表的創(chuàng)始人。n生命表的特點n構(gòu)造原理簡單、數(shù)據(jù)準(zhǔn)確(大樣本場合)、不依賴總體分布假

9、定(非參數(shù)方法)生命表的構(gòu)造n原理n在大數(shù)定理的基礎(chǔ)上,用觀察數(shù)據(jù)計算各年齡人群的生存概率。(用頻數(shù)估計頻率)n常用符號n新生生命組個體數(shù):n年齡:n極限年齡:x0l生命表的構(gòu)造n 個新生生命能生存到年齡X的期望個數(shù):n 個新生生命中在年齡x與x+n之間死亡的期望個數(shù):特別:n=1時,記作0lnxdxd1nxxx nxxxdlldllxl0( )xlls x0lxxxdlq生命表的構(gòu)造n 個新生生命在年齡x至x+t區(qū)間共存活年數(shù):n 個新生生命中能活到年齡x的個體的剩余壽命總數(shù):txxyxtdylLxyxoxxxTl dyTel0l0ltxLxTxxld生命表中列有的 和的值會給計算各種概率帶

10、來方便。,1x kxx kkxkxkxxxlllpqpll xkxk mxk mx kx k mxxx kx k mxqpplllllll 生命表實例(美國全體人口生命表)年齡區(qū)間死亡比例期初生存數(shù)期間死亡數(shù)在年齡區(qū)間共存活年數(shù)剩余壽命總數(shù)期初存活者平均剩余壽命天0-1.00463100000463273738775873.881-7.00246995372451635738748574.227-28.00139992921385708738585074.38年0-1.0126010000126098973738775873.881-2.00093987409298694728878573.8

11、22-3.00065986486498617719009172.89txxxtqxtdxtLxTxexl例3.1:n已知 n計算下面各值:(1)(2)20歲的人在5055歲死亡的概率。(3)該人群平均壽命。)1001 (10000 xlx30103030302030,qqpd例3.1答案1000000020555020530304140301030603030303050302031303050)1001 ( 316/1 270/1 7/3 7/5 1001dxxlTlllqlllqlllqllpllde、生命表的類型n國民生命表n經(jīng)驗生命表n國民生命表:是根據(jù)全國范圍內(nèi)的人口統(tǒng)計資料構(gòu)造出來

12、的,反映的是一個特定時期內(nèi)全國人口的壽命分布情況。n經(jīng)驗生命表:是人壽保險公司經(jīng)營壽險業(yè)務(wù)死亡率的經(jīng)驗結(jié)果,它是以人壽保險公司的被保險人群體為對象。它分為終極表、選擇表和綜合表。選擇-終極生命表n選擇-終極生命表構(gòu)造的原因n需要構(gòu)造選擇生命表的原因:剛剛接受體檢的新成員的健康狀況會優(yōu)于很早以前接受體檢的老成員。n需要構(gòu)造終極生命表的原因:選擇效力會隨時間而逐漸消失n選擇-終極生命表的使用選擇-終極表實例x選擇表終極表70.0175 .0249 .0313 .0388 .0474 .0545 7571.0191 .0272 .0342 .0424 .0518 .0596 7672.0209 .0

13、297 .0374 .0463 .0566 .0652 7773.0228 .0324 .0409 .0507 .0620 .0714 7874.0249 .0354 .0447 .0554 .0678 .0781 7975.0273 .0387 .0489 .0607 .0742 .0855 8076.0298 .0424 .0535 .0664 .0812 .0936 8177.0326 .0464 .0586 .0727 .0889 .1024 8278.0357 .0508 .0641 .0796 .0973 .1121 83xq5xq1 xq2 xq3 xq4 xq5x 225001

14、.,150602 50603xs xe給出生存函數(shù)求:()人在歲至歲之間死亡的概率;( ) 歲的人在歲以前死亡的概率;( )人能活到70歲的概率;(4)50歲的人能活到70歲的概率。 1 Pr(5060)X 5060ss 361250.36790.23690.1310ee 10503612515050102500.370.240.370.35ssqseee 49253 Pr70700.14086Xse 20504925150204500.140860.367880.38561spsee 8080810.07,3129,.qdl 2 2. . 已已知知求求81808080808080808081

15、3129447000.0744700312941571llddlqdlql( )( )( )1( )B( )1( )C( )( )1D( )1( )S xF xAS xF xS xF xS xF xS xFx 之之間間的的關(guān)關(guān)系系正正確確的的是是( (、1 1、生生存存函函數(shù)數(shù)和和分分布布數(shù)數(shù)函函、 2)TTTTTtxxTftsxtsxtAftBfts xs xsxtCftDftps x 、關(guān)關(guān)于于剩剩余余壽壽命命 的的概概率率密密度度函函數(shù)數(shù)表表述述正正確確的的是是( (、 113PrPr1 ,0,1,PrPrPrkxkxkxkxkx kxAK xkkT xkkBK xkK xkKqqCppDpqxk 、下下列列表表述述錯錯誤誤的的是是()、 00004xxyyxydydyxdyyAs xeBs xeCs xedyDs xe 、死死亡亡效效力力和和生生存存函函數(shù)數(shù)之之間間的的關(guān)關(guān)系系表表述

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論