下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、福建省長(zhǎng)樂(lè)第一中學(xué)高中數(shù)學(xué)必修三3.2.1-3.2.2古典概型及隨機(jī)數(shù)的產(chǎn)生教案一、教學(xué)目標(biāo):1、知識(shí)與技能:(1)正確理解古典概型的兩大特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等;(2)掌握古典概型的概率計(jì)算公式:P(A)=(3)了解隨機(jī)數(shù)的概念;(4)利用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù),并能直接統(tǒng)計(jì)出頻數(shù)與頻率。2、過(guò)程與方法:(1)通過(guò)對(duì)現(xiàn)實(shí)生活中具體的概率問(wèn)題的探究,感知應(yīng)用數(shù)學(xué)解決問(wèn)題的方法,體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界的聯(lián)系,培養(yǎng)邏輯推理能力;(2)通過(guò)模擬試驗(yàn),感知應(yīng)用數(shù)字解決問(wèn)題的方法,自覺(jué)養(yǎng)成動(dòng)手、動(dòng)腦的良好習(xí)慣。3、情感態(tài)度與價(jià)值觀:通過(guò)數(shù)學(xué)與探究活動(dòng),
2、體會(huì)理論來(lái)源于實(shí)踐并應(yīng)用于實(shí)踐的辯證唯物主義觀點(diǎn).二、重點(diǎn)與難點(diǎn):1、正確理解掌握古典概型及其概率公式;2、正確理解隨機(jī)數(shù)的概念,并能應(yīng)用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù)三、學(xué)法與教學(xué)用具:1、與學(xué)生共同探討,應(yīng)用數(shù)學(xué)解決現(xiàn)實(shí)問(wèn)題;2、通過(guò)模擬試驗(yàn),感知應(yīng)用數(shù)字解決問(wèn)題的方法,自覺(jué)養(yǎng)成動(dòng)手、動(dòng)腦的良好習(xí)慣四、教學(xué)設(shè)想:1、創(chuàng)設(shè)情境:(1)擲一枚質(zhì)地均勻的硬幣,結(jié)果只有2個(gè),即“正面朝上”或“反面朝上”,它們都是隨機(jī)事件。(2)一個(gè)盒子中有10個(gè)完全相同的球,分別標(biāo)以號(hào)碼1,2,3,10,從中任取一球,只有10種不同的結(jié)果,即標(biāo)號(hào)為1,2,3,10。師生共同探討:根據(jù)上述情況,你能發(fā)現(xiàn)它們有什么共同特點(diǎn)?2、基
3、本概念:(1)基本事件、古典概率模型、隨機(jī)數(shù)、偽隨機(jī)數(shù)的概念見(jiàn)課本P121126;(2)古典概型的概率計(jì)算公式:P(A)=3、例題分析:課本例題略例1 擲一顆骰子,觀察擲出的點(diǎn)數(shù),求擲得奇數(shù)點(diǎn)的概率。分析:擲骰子有6個(gè)基本事件,具有有限性和等可能性,因此是古典概型。解:這個(gè)試驗(yàn)的基本事件共有6個(gè),即(出現(xiàn)1點(diǎn))、(出現(xiàn)2點(diǎn))、(出現(xiàn)6點(diǎn))所以基本事件數(shù)n=6,事件A=(擲得奇數(shù)點(diǎn))=(出現(xiàn)1點(diǎn),出現(xiàn)3點(diǎn),出現(xiàn)5點(diǎn)),其包含的基本事件數(shù)m=3所以,P(A)=0.5小結(jié):利用古典概型的計(jì)算公式時(shí)應(yīng)注意兩點(diǎn):(1)所有的基本事件必須是互斥的;(2)m為事件A所包含的基本事件數(shù),求m值時(shí),要做到不重不
4、漏。例2 從含有兩件正品a1,a2和一件次品b1的三件產(chǎn)品中,每次任取一件,每次取出后不放回,連續(xù)取兩次,求取出的兩件產(chǎn)品中恰有一件次品的概率。解:每次取出一個(gè),取后不放回地連續(xù)取兩次,其一切可能的結(jié)果組成的基本事件有6個(gè),即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括號(hào)內(nèi)左邊的字母表示第1次取出的產(chǎn)品,右邊的字母表示第2次取出的產(chǎn)用A表示“取出的兩種中,恰好有一件次品”這一事件,則A=(a1,b1),(a2,b1),(b1,a1),(b1,a2)事件A由4個(gè)基本事件組成,因而,P(A)=例3 現(xiàn)有一批產(chǎn)品共有10件,其中8件為正品
5、,2件為次品:(1)如果從中取出一件,然后放回,再取一件,求連續(xù)3次取出的都是正品的概率;(2)如果從中一次取3件,求3件都是正品的概率分析:(1)為返回抽樣;(2)為不返回抽樣解:(1)有放回地抽取3次,按抽取順序(x,y,z)記錄結(jié)果,則x,y,z都有10種可能,所以試驗(yàn)結(jié)果有10×10×10=103種;設(shè)事件A為“連續(xù)3次都取正品”,則包含的基本事件共有8×8×8=83種,因此,P(A)= =0.512(2)解法1:可以看作不放回抽樣3次,順序不同,基本事件不同,按抽取順序記錄(x,y,z),則x有10種可能,y有9種可能,z有8種可能,所以試驗(yàn)的
6、所有結(jié)果為10×9×8=720種設(shè)事件B為“3件都是正品”,則事件B包含的基本事件總數(shù)為8×7×6=336, 所以P(B)= 0.467解法2:可以看作不放回3次無(wú)順序抽樣,先按抽取順序(x,y,z)記錄結(jié)果,則x有10種可能,y有9種可能,z有8種可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以試驗(yàn)的所有結(jié)果有10×9×8÷6=120,按同樣的方法,事件B包含的基本事件個(gè)數(shù)為8×7×6÷6=56,因此P(B)= 0.467小
7、結(jié):關(guān)于不放回抽樣,計(jì)算基本事件個(gè)數(shù)時(shí),既可以看作是有順序的,也可以看作是無(wú)順序的,其結(jié)果是一樣的,但不論選擇哪一種方式,觀察的角度必須一致,否則會(huì)導(dǎo)致錯(cuò)誤例4 利用計(jì)算器產(chǎn)生10個(gè)1100之間的取整數(shù)值的隨機(jī)數(shù)。解:具體操作如下:鍵入PRBRAND RANDISTAT DECENTERRANDI(1,100)STAT DEGENTERRAND (1,100) 3STAT DEC反復(fù)操作10次即可得之小結(jié):利用計(jì)算器產(chǎn)生隨機(jī)數(shù),可以做隨機(jī)模擬試驗(yàn),在日常生活中,有著廣泛的應(yīng)用。例5 某籃球愛(ài)好者,做投籃練習(xí),假設(shè)其每次投籃命中的概率是40%,那么在連續(xù)三次投籃中,恰有兩次投中的概率是多少?分析
8、:其投籃的可能結(jié)果有有限個(gè),但是每個(gè)結(jié)果的出現(xiàn)不是等可能的,所以不能用古典概型的概率公式計(jì)算,我們用計(jì)算機(jī)或計(jì)算器做模擬試驗(yàn)可以模擬投籃命中的概率為40%。解:我們通過(guò)設(shè)計(jì)模擬試驗(yàn)的方法來(lái)解決問(wèn)題,利用計(jì)算機(jī)或計(jì)算器可以生產(chǎn)0到9之間的取整數(shù)值的隨機(jī)數(shù)。我們用1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,這樣可以體現(xiàn)投中的概率是40%。因?yàn)槭峭痘@三次,所以每三個(gè)隨機(jī)數(shù)作為一組。例如:產(chǎn)生20組隨機(jī)數(shù):812,932,569,683,271,989,730,537,925,907,113,966,191,431,257,393,027,556這就相當(dāng)于做了20次試驗(yàn),在這組數(shù)中,如
9、果恰有兩個(gè)數(shù)在1,2,3,4中,則表示恰有兩次投中,它們分別是812,932,271,191,393,即共有5個(gè)數(shù),我們得到了三次投籃中恰有兩次投中的概率近似為=25%。小結(jié):(1)利用計(jì)算機(jī)或計(jì)算器做隨機(jī)模擬試驗(yàn),可以解決非古典概型的概率的求解問(wèn)題。(2)對(duì)于上述試驗(yàn),如果親手做大量重復(fù)試驗(yàn)的話,花費(fèi)的時(shí)間太多,因此利用計(jì)算機(jī)或計(jì)算器做隨機(jī)模擬試驗(yàn)可以大大節(jié)省時(shí)間。(3)隨機(jī)函數(shù)RANDBETWEEN(a,b)產(chǎn)生從整數(shù)a到整數(shù)b的取整數(shù)值的隨機(jī)數(shù)。例6 你還知道哪些產(chǎn)生隨機(jī)數(shù)的函數(shù)?請(qǐng)列舉出來(lái)。解:(1)每次按SHIFT RNA# 鍵都會(huì)產(chǎn)生一個(gè)01之間的隨機(jī)數(shù),而且出現(xiàn)01內(nèi)任何一個(gè)數(shù)的
10、可能性是相同的。(2)還可以使用計(jì)算機(jī)軟件來(lái)產(chǎn)生隨機(jī)數(shù),如Scilab中產(chǎn)生隨機(jī)數(shù)的方法。Scilab中用rand()函數(shù)來(lái)產(chǎn)生01之間的隨機(jī)數(shù),每周用一次rand()函數(shù),就產(chǎn)生一個(gè)隨機(jī)數(shù),如果要產(chǎn)生ab之間的隨機(jī)數(shù),可以使用變換rand()*(ba)+a得到4、課堂小結(jié):本節(jié)主要研究了古典概型的概率求法,解題時(shí)要注意兩點(diǎn):(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。(2)古典概型的解題步驟;求出總的基本事件數(shù);求出事件A所包含的基本事件數(shù),然后利用公式P(A)=(3)隨機(jī)數(shù)量具有廣泛的應(yīng)用,可以幫助我們安排和模擬一些試驗(yàn),這樣可以代替我們自己做大量重復(fù)試驗(yàn),比如現(xiàn)在很多
11、城市的重要考試采用產(chǎn)生隨機(jī)數(shù)的方法把考生分配到各個(gè)考場(chǎng)中。5、自我評(píng)價(jià)與課堂練習(xí):1在40根纖維中,有12根的長(zhǎng)度超過(guò)30mm,從中任取一根,取到長(zhǎng)度超過(guò)30mm的纖維的概率是( )A B C D以上都不對(duì)2盒中有10個(gè)鐵釘,其中8個(gè)是合格的,2個(gè)是不合格的,從中任取一個(gè)恰為合格鐵釘?shù)母怕适茿 B C D 3在大小相同的5個(gè)球中,2個(gè)是紅球,3個(gè)是白球,若從中任取2個(gè),則所取的2個(gè)球中至少有一個(gè)紅球的概率是 。4拋擲2顆質(zhì)地均勻的骰子,求點(diǎn)數(shù)和為8的概率。5利用計(jì)算器生產(chǎn)10個(gè)1到20之間的取整數(shù)值的隨機(jī)數(shù)。6用0表示反面朝上,1表正面朝上,請(qǐng)用計(jì)算器做模擬擲硬幣試驗(yàn)。6、評(píng)價(jià)標(biāo)準(zhǔn):1B提示:
12、在40根纖維中,有12根的長(zhǎng)度超過(guò)30mm,即基本事件總數(shù)為40,且它們是等可能發(fā)生的,所求事件包含12個(gè)基本事件,故所求事件的概率為,因此選B.2C提示:(方法1)從盒中任取一個(gè)鐵釘包含基本事件總數(shù)為10,其中抽到合格鐵訂(記為事件A)包含8個(gè)基本事件,所以,所求概率為P(A)=.(方法2)本題還可以用對(duì)立事件的概率公式求解,因?yàn)閺暮兄腥稳∫粋€(gè)鐵釘,取到合格品(記為事件A)與取到不合格品(記為事件B)恰為對(duì)立事件,因此,P(A)=1P(B)=1=.3提示;記大小相同的5個(gè)球分別為紅1,紅2,白1,白2,白3,則基本事件為:(紅1,紅2),(紅1,白1),(紅1,白2)(紅1,白3),(紅2,白3),共10個(gè),其中至少有一個(gè)紅球的事件包括7個(gè)基本事件,所以,所求事件的概率為.本題還可以利用“對(duì)立事件的概率和為1”來(lái)求解,對(duì)于求“至多”“至少”等事件的概率頭問(wèn)題,常采用間接法,即求其對(duì)立事件的概率P(A),然后利用P(A)1P(A)求解。4.解:在拋擲2顆骰子的試驗(yàn)中,每顆骰子均可出現(xiàn)1點(diǎn),2點(diǎn),6點(diǎn)6種不同的結(jié)果,我們把兩顆骰子標(biāo)上記號(hào)1,2以便區(qū)分,由于1號(hào)骰子的一個(gè)結(jié)果,因此同時(shí)擲兩顆骰子的結(jié)果共有6×6=36種,在上面的所有結(jié)果中,向上的點(diǎn)數(shù)之和為8的結(jié)果有(2,6),(3,5),(4,4),(5,3),(6,2)5種,所以,所求事
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個(gè)人房產(chǎn)交易稅費(fèi)收據(jù)模板制作服務(wù)協(xié)議2篇
- 教育技術(shù)在培養(yǎng)學(xué)生自主學(xué)習(xí)能力中的作用與挑戰(zhàn)
- 2025年度魚(yú)塘承包與漁業(yè)信息化管理合作協(xié)議4篇
- 未來(lái)教育的趨勢(shì)以小學(xué)科學(xué)教學(xué)中的項(xiàng)目式學(xué)習(xí)為例談科技教育的長(zhǎng)遠(yuǎn)影響
- 二零二五年度車(chē)庫(kù)房租賃與車(chē)位租賃及物業(yè)管理合同4篇
- 現(xiàn)代科技在農(nóng)村房屋墻體材料優(yōu)化中的應(yīng)用
- 2025版?zhèn)€人二手房交易合同含房屋質(zhì)量保證承諾
- 二零二五年度木工欄桿安裝工程勞務(wù)分包及綠色認(rèn)證合同4篇
- 探索星系間的聯(lián)系解開(kāi)宇宙的秘密線索
- 杭州浙江杭州市丁信中學(xué)編外招聘筆試歷年參考題庫(kù)附帶答案詳解
- 創(chuàng)新者的窘境讀書(shū)課件
- 綜合素質(zhì)提升培訓(xùn)全面提升個(gè)人綜合素質(zhì)
- 如何克服高中生的社交恐懼癥
- 聚焦任務(wù)的學(xué)習(xí)設(shè)計(jì)作業(yè)改革新視角
- 淋巴瘤患者的護(hù)理
- 移動(dòng)商務(wù)內(nèi)容運(yùn)營(yíng)(吳洪貴)任務(wù)三 APP的品牌建立與價(jià)值提供
- 電子競(jìng)技范文10篇
- 食堂服務(wù)質(zhì)量控制方案與保障措施
- VI設(shè)計(jì)輔助圖形設(shè)計(jì)(2022版)
- 眼科學(xué)常考簡(jiǎn)答題
- 物料分類(lèi)帳的應(yīng)用
評(píng)論
0/150
提交評(píng)論