編碼(E)解碼(D)函數(shù)_第1頁
編碼(E)解碼(D)函數(shù)_第2頁
編碼(E)解碼(D)函數(shù)_第3頁
編碼(E)解碼(D)函數(shù)_第4頁
編碼(E)解碼(D)函數(shù)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、 ERROR-DETECTING AND ERROR- CORRECTING CODES A simple scheme for detecting errors is to append a parity check digit to each block of message. Even parity: the total number of 1s in a block is even. Thus, for the message BAT, which encoded as 01000010 01000001 01010100 will be transmitted as 01000010

2、0 010000010 010101001. Suppose BAT is received as 010000110 010000010 010101001. We know one digit is wrong in the first block.Another error-detecting scheme is to transmit each block twice. For instance, BAT is transmitted as 01000010 01000010 01000001 01000001 01010100 01010100 Again, received mes

3、sage is as the following, revealing the 8th digit is incorrect in the 1st block. 01000011 01000010 01000001 01000001 01010100 01010100Definition: (1) message word: message block; message length k = 8 (2) code-word: bit string to be transmitted for a message word; code-word length n = 9 (the former),

4、 n = 16 (the latter) (3) efficiency of (k,n)-block code, i.e. k/n: 8/9 (the former), 8/16 (the latter) 編碼(E)/解碼(D)函數(shù): one-to-one function and E = D-1 (inverse func of D), D = E-1 message w1, w2, w3 to be encoded as E(w1), E(w2), E(w3), . decoded as D(E(w1) = w1 if correct, D(E(w2) = w2, . Ex31: By t

5、ransmitting each block 3 times, we get 01000010 01000010 01000010 01000001 01000001 01000001 01010100 01010100 01010100 Although efficiency is low (k/n=8/24), it is possible to identify the intended code-word even if transmitted wrongly. The 8th bit is incorrectly received as follows: 01000011 01000

6、010 01000010 ., but we assume correct code-word is 01000010 01000010 01000010 . dut to probability. Ex32: 兩字碼如後: 01001100 01001101, 若錯誤發(fā)生在這兩個 字碼的最後一個位元, 系統(tǒng)不會察覺錯誤已發(fā)生; 所以欲擁有 錯誤修正能力, 不只要求編/解碼函數(shù)為一對一函數(shù), 另外還需 下述的論辯. Hamming distance: d(010101, 011001) = 2 d(11010100, 01111110) = 4 The Triangle Inequality:

7、 d(c1, c3) d(c1, c2) + d(c2, c3) if c1, c2 and c3 are code-words of the same length. 接收到一字碼 c, 系統(tǒng)解碼成 D(c) ; 但, 接收到不是字碼的 c 碼, 系統(tǒng)還是會解碼成 D(c) , 如果只有 d(c,c) 最小. 如果有兩個以 上的字碼一樣的最靠近 c , 則系統(tǒng)記錄有錯誤發(fā)生; 接收到不是 字碼的 z 碼, 若D(z)沒有定義 (例如雜訊), 系統(tǒng)應(yīng)記錄: 錯誤發(fā)生 假設(shè)一編碼系統(tǒng)的字碼距離都至少為 3 , 且接收到不是字碼的 c 碼; 如果已知傳送時發(fā)生單一錯誤, 設(shè) d(c6, c) =

8、1 , 則 code- word c6 必為原先所傳輸?shù)淖执a. Suppose a code-word c7 c6 ; with the Triangle Inequality, 3 d(c6, c7) d(c, c6) + d(c, c7) = 1 + d(c, c7) 2 d(c, c7) 但, 已知傳送時只發(fā)生單一錯誤; 故, c7不可能為原先傳輸?shù)淖执a. Theorem: The min Hamming distance of a block code is m, then the sys (1) can detect r or fewer errors if and only if

9、m r + 1 (2) can correct r or fewer errors if and only if m 2r + 1 好的編碼-修正區(qū)塊中儘可能多的錯誤-其字碼間的最小距離 須愈大愈好MATRIX CODES Define Wm to be the set of all strings of 0s and 1s with length m. For example, W3 = 000, 001, 010, 011, 100, 101, 110, 111 the encoding func for a (k, n)-block code is a one-to-one func E

10、: Wk Wn . Suppose A is a kxn matrix of 1s and 0s, and x is a 1xn matrix of 1s and 0s. The product xA over Z2 is a 1xn matrix of 1s and 0s. Hence, an element in Wm can be regarded as a 1xm matrix of 1s and 0s, and then the product of an element x in Wk and matrix A is the element xA in Wn . Ex33: Let

11、 and x = 1 1 0 , y = 0 1 0 xA = 1 1 1 0 is an element of W4 yA = 0 1 1 1 110111101001AE defines a matrix code: when E is one-to-one and E: Wk Wn defined by E(x) = x A A: generator matrixTo ensure that E is one-to-one is to choose the first k columns of A form the kxk identity matrix Ik. Denote A hav

12、ing this form by writing A = Ik |J , where J is a kx(n-k) matrix whose columns are the last n-k columns of A. For such matrix A, the first k entries of xA will be the same as in x. . Hence, if x x1A = x2A then x1 = x2 . Ex34: then 110010010100101001001A110010101001J 前述的生成矩陣 A 為3x7矩陣, 其對應(yīng)的矩陣碼為 (3,7)-

13、區(qū)塊碼; 對任何W3中元素, w1 w2 w3, 可得 w1 w2 w3A = w1 w2 w3 w1 w2 w3 w1+w2+w3 i.e. 對訊息字元w而言, 其對應(yīng)字碼, E(w) = wA, 是重複w兩次 再加上其同位位元; 編碼如下: E(0 0 0) = 0 0 0 0 0 0 0 = c1 E(0 0 1) = 0 0 1 0 0 1 1 = c2 : : E(1 1 1) = 1 1 1 1 1 1 1 = c8 Please note d(c1, c2) = 3, d(c1, c8) = 8 , so it can detect 2 bits error and correc

14、t one bit error according to the theorem above. The Check Matrix of a Code Define a nx(n-k) matrix A* so that its first k rows are the corresponding rows of J and its last n-k rows are those of the (n-k)x(n-k) identity matrix. Symbolically, we write and is called the check matrix associated with A.

15、Ex35: is not coincident! knIJA*111010110101100010001A111010110101J1000010000100001111010110101*A000000000000*AA Theorem: A = Ik |J be the generator matrix for a (k, n)-block code, and let A* be its check matrix. (1) In the kx(n-k) matrix AA*, each entry equals 0. (2) A word c of length n is a code-w

16、ord iif cA* = 0 (a 1x(n-k) zero matrix) Ex36: ( ref ex34) For x = 1 0 1 0 0 1 1, its we have xA = 1 0 0 1 Because xA 0, theorem implies x is not a codeword. Ex37: Justify the condition that w1 w2 w3 w4 w5 w6 w7A* = 0 0 0 0 Since w1 w2 w3 w4 w5 w6 w7A* = w1+w4 w2+w5 w3+w6 w1+w2+w3+w710000100001000011

17、10010101001*AWe get w1 = -w4, i.e. w1= w4 (over Z2) then w2 = w5, w3 = w6, and w1 + w2 + w3 = -w7 = w7 Hence, w7 = 0 if w1 w2 w3 contains an even number of 1s, and w7 = 1 if w1 w2 w3 contains an odd number of 1s.Thus w1 w2 w3 w4 w5 w6 w7A* = 0 0 0 0 when w4 w5 w6 is identical to w1 w2 w3, and w7 is

18、a check bit of 1 or 0 according to whether the number of 1s in w1 w2 w3 is even or odd. But these are exactly the requirements that make xA* a codeword for this code. MATRIX CODES THAT CORRECT ALL SINGLE-DIGIT ERRORS Theorem: A code can correct all single-bit errors iif its check matrix satisfies th

19、e following two conditions: (1) No row of A* consists entirely of 0s. (2) No two row of A* are identical. Ex38: (ref ex35) The codeword corresponding to the message word x = 1 0 1 is xA = 1 0 1 1 1 0 1. Because this is a (3, 7)-block code, the first 3 bits are the original message word. Similarly, t

20、he codeword 0 1 1 1 0 1 0 decodes as 0 1 1. Note: In step 1, the wA* is named as syndrome of w. Ex39: Decode the message 0010111 1011100 0111010 1000111 1100010 which was sent using the code in ex 35. The decoding of this message, using the check matrix row decoding method, is shown in the following

21、 table: Since the syndrome of the last word is nonzero, but not a row of A*, there must have been 2 or more errors in the transmission. Received word w 0010111 1011100 0111010 1000111 1100010 Syndrome wA* 0000 0001 0000 1101 0101 Row of A* - 7 - 2not a row of A* Codeword 0010111 1011101 0111010 1100

22、111 unknown Message word 001 101 011 110 unknown Hamming Code 回憶 ex37 的 (3, 7)-碼, 能夠修正所有單一位元錯誤, 其效率為 3/7 ; 似乎不夠好, 不禁要問: 能夠修正所有單一位元錯誤且最有 效率的 (3, n)-碼 為何? P. 51 的定理透露端倪, 如果 n=3 則每個收到的字元皆為字碼; 因而無法偵測到傳輸錯誤. 假設(shè) A = Ik |J 是 (3, 4)-碼 的生成 矩陣, 則J為3x1矩陣, 會有兩相同列; 所以A*有兩個相同的列, 故無法修正所有單一位元錯誤. 設(shè) A = Ik |J 是 (3, 5)

23、-碼 的生成矩陣, 則J為3x2矩陣, 會有兩相同列; 所以A*無法修正所有單一位元錯誤.然而, 若 A 是 (3, 6)-碼 的生成矩陣, 則J為3x3矩陣, 很容易找到 A*, 例如 , 故 (3, 6)-碼 可以修正所有單一位元錯誤.110101011J Theorem: A (k, n)-code exists that corrects all single-bit errors iif 2n-k 1 n. Setting r = n k, n = 2r 1 i.e. n is 1 less than a power of 2. We require r 1 because r =

24、1 implies that k = 0 (wrong!) The first five such values of k and n are given in the following: For these pairs of k and n, we can construct a (k, n)-code that corrects all single-bit errors. The check matrix, which is nxr, has n rows, each of length r. But there are only 2r such rows for A*, so eac

25、h nonzero row must be used. A matrix code for which the check matrix has this property is called a Hamming code. r 2 3 4 5 6 k = 2r r - 1 1 4 11 26 57 n = 2r - 1 3 7 15 31 63 Ex40: The preceding table shows that the Hamming code for r = 2 has k = 1 and n = 3. Thus the check matrix is since the rows of A* must be nonzero and distinct, so ? must be 1. In this case, for every message word x we have xA = x x x and so the code repeats each me

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論