版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、壓軸題之函數(shù)導(dǎo)數(shù)備考建議壓軸題之函數(shù)導(dǎo)數(shù)備考建議20172017年臨沂市高三數(shù)學(xué)二輪研討會(huì)年臨沂市高三數(shù)學(xué)二輪研討會(huì)2017.3一、分析高考,探尋規(guī)律一、分析高考,探尋規(guī)律(一)考題回顧(一)考題回顧2007-20162007-2016年份年份考考 查查 內(nèi)內(nèi) 容容2007200722( (三問(wèn)三問(wèn)1414分分) )判斷單調(diào)性、求極值點(diǎn)、證明不等式判斷單調(diào)性、求極值點(diǎn)、證明不等式200821( (兩問(wèn)兩問(wèn)1212分分) )求極值、證明不等式求極值、證明不等式20092 21( (兩問(wèn)兩問(wèn)1212分分)()(應(yīng)用題應(yīng)用題) )求求函數(shù)解析式、函數(shù)解析式、最值最值201022( (兩問(wèn)兩問(wèn)1414
2、分分) )討論討論單調(diào)性、單調(diào)性、( (任意、存在任意、存在) )求參數(shù)范圍求參數(shù)范圍201121( (兩問(wèn)兩問(wèn)1212分分) )(應(yīng)用題應(yīng)用題)求解析式求解析式( (含定義域含定義域) )、最值、最值201222( (三問(wèn)三問(wèn)1313分分) )求參數(shù)值求參數(shù)值( (切線切線) )、求單調(diào)區(qū)間、證不等式、求單調(diào)區(qū)間、證不等式201321( (兩問(wèn)兩問(wèn)1313分分) )求單調(diào)區(qū)間、最大值、討論方程根的個(gè)數(shù)求單調(diào)區(qū)間、最大值、討論方程根的個(gè)數(shù)201420( (兩問(wèn)兩問(wèn)1313分分) )求單調(diào)區(qū)間、根據(jù)極值點(diǎn)個(gè)數(shù)求參數(shù)范圍求單調(diào)區(qū)間、根據(jù)極值點(diǎn)個(gè)數(shù)求參數(shù)范圍201521( (兩問(wèn)兩問(wèn)1414分分)
3、)討論討論極值極值點(diǎn)個(gè)數(shù)點(diǎn)個(gè)數(shù)、求參數(shù)范圍求參數(shù)范圍(恒成立問(wèn)題恒成立問(wèn)題)201620( (兩問(wèn)兩問(wèn)1313分分) )討論單調(diào)性討論單調(diào)性、證明不等式、證明不等式(二)考點(diǎn)考查情況統(tǒng)計(jì)(二)考點(diǎn)考查情況統(tǒng)計(jì)考點(diǎn)考點(diǎn)年份年份次數(shù)次數(shù)單調(diào)性、單調(diào)區(qū)間2007、2010、20122013、2014、20166最值、極值(點(diǎn))2007、2008、20092011、2013、201420157不等式(恒成立等)2007、2008、20102012、2015、20166求參數(shù)范圍2010、2014、20153應(yīng)用題2009、20112零點(diǎn)(根)問(wèn)題20131切線問(wèn)題20121(二)考點(diǎn)考查情況統(tǒng)計(jì)(二)
4、考點(diǎn)考查情況統(tǒng)計(jì)(三)考試說(shuō)明(三)考試說(shuō)明 了解了解導(dǎo)數(shù)概念的實(shí)際背景. 通過(guò)函數(shù)圖像直觀理解理解導(dǎo)數(shù)的幾何意義. 能能根據(jù)導(dǎo)數(shù)的定義求函數(shù) (c為常數(shù))的導(dǎo)數(shù). 能能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡(jiǎn)單函數(shù)的導(dǎo)數(shù),能能求簡(jiǎn)單的復(fù)合函數(shù)(僅限于形如f(ax+b)的復(fù)合函數(shù))的導(dǎo)數(shù).(三)考試說(shuō)明(三)考試說(shuō)明 了解了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系;能能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)會(huì)求函數(shù)的單調(diào)區(qū)間(其中多項(xiàng)式函數(shù)一般不超過(guò)三次). 了解了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件;會(huì)會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值(其中多項(xiàng)式函數(shù)一般不超過(guò)三次);會(huì)會(huì)求閉區(qū)間上函數(shù)的最大值、最小
5、值(其中多項(xiàng)式函數(shù)一般不超過(guò)三次). 會(huì)會(huì)用導(dǎo)數(shù)解決某些實(shí)際問(wèn)題.熱點(diǎn)熱點(diǎn)1 1.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、單調(diào)區(qū)間、 以及已知函數(shù)的單調(diào)性,確定函數(shù)中的 參變量變化范圍等問(wèn)題;熱點(diǎn)熱點(diǎn)2 2.求函數(shù)極值(點(diǎn))、最值或已知極值(點(diǎn)) 最值求參數(shù)的取值范圍; 熱點(diǎn)熱點(diǎn)3 3.證明不等式恒成立或已知不等式恒成立求參 數(shù)的取值范圍;(四)命題規(guī)律探尋(四)命題規(guī)律探尋 另外,利用導(dǎo)數(shù)研究三次函數(shù),分式函數(shù),指對(duì)函數(shù)的其他性質(zhì)問(wèn)題,方程根與函數(shù)零點(diǎn)問(wèn)題方程根與函數(shù)零點(diǎn)問(wèn)題,利用導(dǎo)數(shù)的幾何意義處理曲線的切線問(wèn)題;利用導(dǎo)數(shù)解決實(shí)際問(wèn)題中的最優(yōu)化問(wèn)題,這些也是高考經(jīng)常涉及的地方.(四)命題規(guī)律探尋(四)命題
6、規(guī)律探尋(五)山東卷函數(shù)式結(jié)構(gòu)特點(diǎn)(五)山東卷函數(shù)式結(jié)構(gòu)特點(diǎn)(五)山東卷函數(shù)式結(jié)構(gòu)特點(diǎn)(五)山東卷函數(shù)式結(jié)構(gòu)特點(diǎn) 特點(diǎn)分析:特點(diǎn)分析: 1.101.10年山東卷有年山東卷有8 8年(僅考應(yīng)用題那兩年例外)年(僅考應(yīng)用題那兩年例外)題設(shè)函數(shù)的解析式中含有題設(shè)函數(shù)的解析式中含有l(wèi)nlnx, , 其中有其中有5 5年核心函數(shù)是年核心函數(shù)是二次函數(shù)形式;二次函數(shù)形式; 2. 09 2. 09年和年和1111年的導(dǎo)數(shù)解答題是以應(yīng)用題的形式年的導(dǎo)數(shù)解答題是以應(yīng)用題的形式出現(xiàn),核心函數(shù)分別為出現(xiàn),核心函數(shù)分別為4 4次和次和3 3次函數(shù);次函數(shù); 3.12 3.12年、年、1313年、年、1414年題設(shè)函數(shù)
7、的解析式中含有年題設(shè)函數(shù)的解析式中含有e ex. . 1212年是以年是以lnlnx與與e ex的復(fù)合的形式出現(xiàn)的復(fù)合的形式出現(xiàn), , 13 13年是以二次函數(shù)與年是以二次函數(shù)與e ex、lnlnx的復(fù)合的形式出現(xiàn);的復(fù)合的形式出現(xiàn); 14 14年是以一次函數(shù)與年是以一次函數(shù)與e ex x、lnxlnx的復(fù)合的形式出現(xiàn)的復(fù)合的形式出現(xiàn). .規(guī)律規(guī)律: :1.1.從外在形式看從外在形式看,10,10道試題的道試題的題設(shè)函數(shù)題設(shè)函數(shù)的解析式的解析式中中8 8道含有道含有對(duì)數(shù)式對(duì)數(shù)式. .2.2.從內(nèi)在關(guān)系看從內(nèi)在關(guān)系看, ,導(dǎo)函數(shù)的導(dǎo)函數(shù)的“核心函數(shù)核心函數(shù)”都是一都是一 次函數(shù)、二次函數(shù)、對(duì)數(shù)式
8、、指數(shù)式或其復(fù)合次函數(shù)、二次函數(shù)、對(duì)數(shù)式、指數(shù)式或其復(fù)合 形式形式 ( (二次函數(shù)居多二次函數(shù)居多).).3.3.這類題主要遵循的解題流程:這類題主要遵循的解題流程: 化簡(jiǎn)化簡(jiǎn)構(gòu)造函數(shù)構(gòu)造函數(shù)求導(dǎo)判斷單調(diào)性求導(dǎo)判斷單調(diào)性 證明恒不等關(guān)系證明恒不等關(guān)系. .(六)(六)1616年全國(guó)及其他省市卷函數(shù)式結(jié)構(gòu)特點(diǎn)年全國(guó)及其他省市卷函數(shù)式結(jié)構(gòu)特點(diǎn)(六)(六)1616年全國(guó)及其他省市卷函數(shù)式結(jié)構(gòu)特點(diǎn)年全國(guó)及其他省市卷函數(shù)式結(jié)構(gòu)特點(diǎn)(六)(六)1616年全國(guó)及其他省市卷函數(shù)式結(jié)構(gòu)特點(diǎn)年全國(guó)及其他省市卷函數(shù)式結(jié)構(gòu)特點(diǎn)(七)總體來(lái)看命題特征(七)總體來(lái)看命題特征整體穩(wěn)定、變化不大整體穩(wěn)定、變化不大注重基礎(chǔ)知識(shí)
9、,基本思想方法,基本能力的考注重基礎(chǔ)知識(shí),基本思想方法,基本能力的考查查注重通性通法的考查注重通性通法的考查考查學(xué)生綜合能力,但不偏不怪,有較高的信考查學(xué)生綜合能力,但不偏不怪,有較高的信度、效度和區(qū)分度,具有良好的選拔和導(dǎo)向功度、效度和區(qū)分度,具有良好的選拔和導(dǎo)向功能能. .函數(shù)與導(dǎo)數(shù)命題規(guī)律函數(shù)與導(dǎo)數(shù)命題規(guī)律1.基本年年考察含參數(shù)函數(shù)的單調(diào)性、最值、極值,但導(dǎo)基本年年考察含參數(shù)函數(shù)的單調(diào)性、最值、極值,但導(dǎo)函數(shù)有效部分在變;函數(shù)有效部分在變;2.含參函數(shù)與方程及與不等式結(jié)合問(wèn)題輪番考查含參函數(shù)與方程及與不等式結(jié)合問(wèn)題輪番考查:與不等式與不等式結(jié)合結(jié)合,證明函數(shù)不等式(均構(gòu)造兩個(gè)函數(shù)或由函數(shù)
10、不等式證明函數(shù)不等式(均構(gòu)造兩個(gè)函數(shù)或由函數(shù)不等式恒成立求參數(shù)的范圍;恒成立求參數(shù)的范圍;3.與方程結(jié)合時(shí)有考查:討論根的個(gè)數(shù);由根的分布求與方程結(jié)合時(shí)有考查:討論根的個(gè)數(shù);由根的分布求參數(shù)范圍參數(shù)范圍(構(gòu)造新函數(shù)構(gòu)造新函數(shù));4.極值點(diǎn)偏移問(wèn)題,中值定理及凸凹性所暗含的雙變量不極值點(diǎn)偏移問(wèn)題,中值定理及凸凹性所暗含的雙變量不等式證明問(wèn)題幾乎沒(méi)怎么涉及;等式證明問(wèn)題幾乎沒(méi)怎么涉及;5.經(jīng)驗(yàn)技巧有所涉及:導(dǎo)數(shù)符號(hào)判斷、導(dǎo)數(shù)零點(diǎn)存在性經(jīng)驗(yàn)技巧有所涉及:導(dǎo)數(shù)符號(hào)判斷、導(dǎo)數(shù)零點(diǎn)存在性處理、縮小變量研究范圍、借助重要函數(shù)不等式放縮函數(shù)處理、縮小變量研究范圍、借助重要函數(shù)不等式放縮函數(shù)等等等等.xxxxe
11、xln1),1ln(1;x 從上面的分析可以猜測(cè)從上面的分析可以猜測(cè),2017,2017年山東省高考命題年山東省高考命題仍然會(huì)仍然會(huì)以以1 1、2 2規(guī)律規(guī)律為基礎(chǔ)為基礎(chǔ), ,進(jìn)行深入演繹進(jìn)行深入演繹. .核心函數(shù)核心函數(shù)仍然會(huì)以仍然會(huì)以兩種不同類型函數(shù)兩種不同類型函數(shù)的復(fù)合為主的復(fù)合為主, ,借鑒其他省借鑒其他省份、地區(qū)的試卷份、地區(qū)的試卷, ,對(duì)題設(shè)函數(shù)進(jìn)行對(duì)題設(shè)函數(shù)進(jìn)行“改頭換面改頭換面”. . 這類問(wèn)題的解決以這類問(wèn)題的解決以構(gòu)造函數(shù)、分離參數(shù)構(gòu)造函數(shù)、分離參數(shù)為途徑,為途徑,求導(dǎo)選擇求導(dǎo)選擇核心函數(shù)核心函數(shù)為突破口,準(zhǔn)確求解核心函數(shù)為突破口,準(zhǔn)確求解核心函數(shù)(特別是二次函數(shù))(特別是
12、二次函數(shù))為落腳點(diǎn)為落腳點(diǎn). .二、命題展望二、命題展望 應(yīng)對(duì)策略應(yīng)對(duì)策略(一)單調(diào)性是永恒的主題(一)單調(diào)性是永恒的主題 無(wú)論是求函數(shù)最值、極值,還是證明不無(wú)論是求函數(shù)最值、極值,還是證明不等式、求參數(shù)的取值范圍,往往都要用到函等式、求參數(shù)的取值范圍,往往都要用到函數(shù)的單調(diào)性,對(duì)函數(shù)單調(diào)性的考查,可以說(shuō)數(shù)的單調(diào)性,對(duì)函數(shù)單調(diào)性的考查,可以說(shuō)是百分之百是百分之百. .(二)突出核心函數(shù)的地位(二)突出核心函數(shù)的地位 因?yàn)閷?dǎo)函數(shù)的因?yàn)閷?dǎo)函數(shù)的“核心函數(shù)核心函數(shù)”是二次函數(shù)是二次函數(shù)的居多,的居多,高考對(duì)二次函數(shù)的考查到了遍地開高考對(duì)二次函數(shù)的考查到了遍地開花、出神入化的境地花、出神入化的境地。二
13、次函數(shù)在高考中的二次函數(shù)在高考中的再現(xiàn)率幾乎為再現(xiàn)率幾乎為100%100%,因此,二次函數(shù)是高中,因此,二次函數(shù)是高中數(shù)學(xué)教學(xué)的重點(diǎn)內(nèi)容數(shù)學(xué)教學(xué)的重點(diǎn)內(nèi)容. . 因此因此在學(xué)習(xí)函數(shù)一般性質(zhì)的時(shí)候,我們就牢牢在學(xué)習(xí)函數(shù)一般性質(zhì)的時(shí)候,我們就牢牢扣住二次函數(shù),以它為載體,深刻領(lǐng)悟二次函數(shù)的扣住二次函數(shù),以它為載體,深刻領(lǐng)悟二次函數(shù)的圖象與性質(zhì),圖象與性質(zhì),記熟三個(gè)二次的關(guān)系,靈活求解記熟三個(gè)二次的關(guān)系,靈活求解二次二次函數(shù)函數(shù)的條件最值問(wèn)題,準(zhǔn)確掌握根的分布規(guī)律的條件最值問(wèn)題,準(zhǔn)確掌握根的分布規(guī)律. 除二次函數(shù)以外,分式函數(shù),含除二次函數(shù)以外,分式函數(shù),含 或或 的函數(shù)亦不容忽視的函數(shù)亦不容忽視.
14、 .(二)突出核心函數(shù)的地位(二)突出核心函數(shù)的地位ln xex【辨析辨析】 常見關(guān)鍵詞常見關(guān)鍵詞能成立能成立:有解,存在:有解,存在恒成立恒成立:任意,一切,總有,都有,解集為:任意,一切,總有,都有,解集為R R恰成立恰成立:解集為:解集為D D不成立不成立:解集為空集,無(wú)解:解集為空集,無(wú)解, ,不存在不存在f(x)a能成立能成立 f(x)mina ; f(x)a不成立不成立 f(x)mina ;這兩者互補(bǔ);這兩者互補(bǔ); f(x)a恒恒成立成立 f(x)m ax a; f(x)a在在D上恰成立上恰成立 f(x)a能成立 f(x)max a; f(x)a不成立 f(x)max a;這兩者互
15、補(bǔ); f(x)a恒成立 f(x)min a; f(x)a在D上恰成立 f(x)a解集為D 恒成立問(wèn)題恒成立問(wèn)題恒成立問(wèn)題能成立問(wèn)題 16 16山東理(山東理(2020)函數(shù)不等式函數(shù)不等式(四)深化三個(gè)數(shù)學(xué)思想(四)深化三個(gè)數(shù)學(xué)思想1.1.分類討論思想分類討論思想2.2.轉(zhuǎn)化與化歸思想轉(zhuǎn)化與化歸思想3.3.數(shù)形結(jié)合思想數(shù)形結(jié)合思想1616全國(guó)全國(guó)1 1理(理(2121)零點(diǎn)與單調(diào)性零點(diǎn)與單調(diào)性(五)分層教學(xué),準(zhǔn)確定位(五)分層教學(xué),準(zhǔn)確定位(六)難點(diǎn)突破,歸類反思(六)難點(diǎn)突破,歸類反思(七)教會(huì)學(xué)生六個(gè)(七)教會(huì)學(xué)生六個(gè)“學(xué)會(huì)學(xué)會(huì)”1.1.學(xué)會(huì)分類討論學(xué)會(huì)分類討論如何找準(zhǔn)分類依據(jù),做如何找準(zhǔn)分類依據(jù),做到不重
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度臨時(shí)用工工作滿意度調(diào)查及改進(jìn)協(xié)議4篇
- 二零二五年度宿舍安全管理宿管員聘用協(xié)議范本3篇
- 二零二五年度ISO 22000食品安全管理體系認(rèn)證咨詢協(xié)議3篇
- 二零二五年度商業(yè)地產(chǎn)項(xiàng)目配套場(chǎng)地租賃服務(wù)協(xié)議2篇
- 二零二五年度外資企業(yè)外籍員工聘用協(xié)議范本3篇
- 2025年度文化旅游項(xiàng)目募集資金三方監(jiān)管合同4篇
- 2025年度豬圈建造與生物安全防護(hù)合同4篇
- 2025年度生物制藥研發(fā)合作協(xié)議
- 二零二五年度城市綠化用地承包合同范本4篇
- 2025年智能車輛識(shí)別一體機(jī)銷售與服務(wù)合同范本4篇
- 纖維增強(qiáng)復(fù)合材料 單向增強(qiáng)材料Ⅰ型-Ⅱ 型混合層間斷裂韌性的測(cè)定 編制說(shuō)明
- 習(xí)近平法治思想概論教學(xué)課件緒論
- 寵物會(huì)展策劃設(shè)計(jì)方案
- 孤殘兒童護(hù)理員(四級(jí))試題
- 梁湘潤(rùn)《子平基礎(chǔ)概要》簡(jiǎn)體版
- 醫(yī)院急診醫(yī)學(xué)小講課課件:急診呼吸衰竭的處理
- 腸梗阻導(dǎo)管在臨床中的使用及護(hù)理課件
- 調(diào)料廠工作管理制度
- 小學(xué)英語(yǔ)單詞匯總大全打印
- 衛(wèi)生健康系統(tǒng)安全生產(chǎn)隱患全面排查
- GB/T 15114-2023鋁合金壓鑄件
評(píng)論
0/150
提交評(píng)論