




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、第三章3.13.33.23.13.1直線的直線的傾斜角和斜率傾斜角和斜率主要內容3.1.2 兩條直線平行與垂直的判定3.1.1 傾斜角與斜率3.1.13.1.1傾斜角與斜率傾斜角與斜率xyo傾斜角與斜率傾斜角與斜率 對于平面直角坐標系內的一條直線l,它的位置由哪些條件確定呢?兩點確定一條直線 還有其他方法嗎?或者說如果只給出一點,要確定這條直線還應增加什么條件? 在直角坐標系中,圖中的四條紅色直線在位置上有什么聯系和區(qū)別?經過同一點經過同一點 傾斜程度不同傾斜程度不同xyo傾斜角與斜率傾斜角與斜率oyxloyxl yoxl oyxl 直線的傾斜角直線的傾斜角 當直線當直線l與與x軸相交時,軸相
2、交時,我們取我們取x軸作為基準,軸作為基準,x軸軸正向正向與直線與直線l向上方向所成向上方向所成的角的角 叫做叫做直線直線l 的傾斜角的傾斜角.x xy yo oP Pl1 1l2 2l3 3l4 4l1 1的傾斜角為銳角的傾斜角為銳角l2 2的傾斜角為直角的傾斜角為直角l3 3的傾斜角為鈍角的傾斜角為鈍角規(guī)定:規(guī)定:當直線與當直線與x x軸平行或重合時,它的傾斜角為軸平行或重合時,它的傾斜角為0 0o o0o0?k0? 當直線的傾斜角在什么范圍時,其斜率當直線的傾斜角在什么范圍時,其斜率k0?k0;,k0;傾斜角為鈍角時傾斜角為鈍角時,k0;,k0;傾斜角為傾斜角為0 0o o時時,k=0.
3、,k=0.的定義tan求出直線的斜率;k 如果給定直線的傾斜角,我們當然可以根據斜率 如果給定直線上兩點坐標,直線是確定的,傾斜角也是確定的,斜率就是確定的,那么又怎么求出直線的斜率呢?4.指出下列直線的傾斜角和斜率: (1) ;xy3(2) ;60tanxy(3).30tan( xy5.結合圖形,觀察傾斜角變化時,斜率的變化情況xyoxyoxyoxyo111222( ,),(,)p x ypxy12xx經過兩點經過兩點 , ,且且 的直線的斜率的直線的斜率k k探究:探究:()xyo222(,)P x y111( ,)P x y21(,)Q x yxyo()1P2PQxyo()1P2PQ當直
4、線的方向當直線的方向向上向上時:時:12P P當直線的方向當直線的方向向下向下時,時,12P P同理也有同理也有21122112tanyyyykxxxx2121tanyykxx 圖圖(1)(1)在在 中,中,12Rt PPQ2121|tan|QPQPPQP2121yyxxtank0tan(180)tanktan圖圖(2)(2)在中,在中,1 2Rt PPQ221112|QPyyQPxxtan2121yyxxxyo(1)222( ,)P x y111( , )P x y21( , )Q x y1212yyxx斜率公式斜率公式公式的特點公式的特點: :( (1) 1) 與兩點的順序無關與兩點的順序
5、無關; ;(2) (2) 公式表明公式表明, ,直線的斜率可以通過直線的斜率可以通過直線上直線上任意任意兩兩(3) (3) 當當x1=x2時時, ,公式不適用公式不適用, ,此時此時=90=90o o點的坐標來表示點的坐標來表示, ,而不需要求出而不需要求出直線的傾斜角直線的傾斜角211221 ()yykxxxx111222( ,),(,) P x yP xy經過兩點的直線的斜率公式經過兩點的直線的斜率公式 1.當直線P1P2平行于x軸或與x軸重合時,用上述公式求斜率. 2.當直線P1P2平行于y軸或與y軸重合時,上述公式還適用嗎?為什么? 由y1=y2,得 k=0由x1=x2,分母為零,斜率
6、k不存在例例1 1 、如圖,已知、如圖,已知A(4,2)A(4,2)、B(-8,2)B(-8,2)、C(0,-2)C(0,-2),求直線求直線ABAB、BCBC、CACA的斜率,并判斷這的斜率,并判斷這 些直線的些直線的傾斜角是什么角?傾斜角是什么角?yxo. .ABC 直線直線AB的斜率的斜率04822ABk2184)8(022BCk14404)2(2CAk直線直線BC的斜率的斜率直線直線CA的斜率的斜率0ABk 直線直線CA的傾斜角為銳角的傾斜角為銳角直線直線BC的傾斜角為鈍角。的傾斜角為鈍角。解: 0CAk直線直線AB的傾斜角為零度角。的傾斜角為零度角。 0BCk 例3 在平面直角坐標系
7、中,畫出經過原點且斜率分別為1,-1,2及-3的直線l1,l2,l3及l(fā)4.x xy yo ol1l2 2l3 3l4 4思考:斜率隨傾斜角逐漸變大是怎樣的變化? 例2 . 已知點A(3,2),B(4,1),C(0,l),求直線AB,BC,CA的斜率,并判斷這些直線的傾斜角是銳角還是鈍角1,)(, 1 00000 ,45 )135 ,180 )(2)(2)直線的傾斜角為直線的傾斜角為 ,且,且 則直線的斜率則直線的斜率k k的取值范圍是的取值范圍是 。(3)(3)設直線的斜率為設直線的斜率為k k,且,且 ,則直線,則直線 11k004 51 3 5的傾斜角的取值范圍是的傾斜角的取值范圍是。例
8、例4 4、(1)(1)直線的傾斜角為直線的傾斜角為 ,且,且 則直線的斜率則直線的斜率k k的取值范圍是的取值范圍是 。004 56 01, 300129090kk小結:1.由()()得出:若 的范圍不含,則 范圍取中間 若 的范圍含,則 范圍取兩邊k2.由(3)得:負k正,應將 值分為正負兩部分, 再求角范圍xyo(2).(2).過點過點C C的直線的直線 與線段有公共點,與線段有公共點,求求 的斜率的斜率k k的取值范圍的取值范圍ll例例5 5:已知點,:已知點,01AB(3,2),(-4,1),C( , )(1).(1).求直線求直線ABAB,BCBC,CACA的斜率,并判斷這的斜率,并
9、判斷這些直線的傾斜角是銳角還是鈍角些直線的傾斜角是銳角還是鈍角1 2114371 110( 4)21 2103ABBCCAkkk 解:()122( )k 1,+ ) (- ,-銳角銳角鈍角鈍角銳角銳角xyoABC22322tan244tan231tan71 ( )4k解:一半一半2222122tan2tan3222tan,411 tan1 tan221383 0,33kkkkkk 解:由得: 即解得:或(舍)(舍)例例6 6:已知直線的斜率為,直線:已知直線的斜率為,直線 的傾斜角是的傾斜角是直線的傾斜角的兩倍,求直線直線的傾斜角的兩倍,求直線 的斜率的斜率34ll332242lABkk解:錯
10、解錯解1 直線傾斜角的概念2 直線的傾斜角與斜率的對應關系3 已知兩點坐標,如何求直線的斜率?斜率公式中腳標1和2有順序嗎?)(2121211212xxxxyyxxyyk小結P86練習:1,2,3,4.P89習題3.1A組:1,2,3,4,5作業(yè)0tan18090)(tan900tan90000tan0akakaaakaka不存在不存在xyoxyo3.1.23.1.2兩條直線的兩條直線的平行與垂直的判定平行與垂直的判定 在平面直角坐標系下,傾斜角可以表示直線的傾斜程度, 斜率也可以表示直線相對于x軸的傾斜程度。我們能否通過直線斜率來判斷兩條直線的位置關系?o oy yx xl1 1l2 2)(
11、211212xxxxyyk12設兩條直線l1,l2的斜率分別為k1,k2若l1/ l2, 則k1,k2滿足什么關系?2121/ll2121/kkll且斜率都存在k=tan 反之, 若k1=k2, ,則易得 l1/ l2對于兩條不重合的直線,平行的充要條件或斜率都不存在2121/kkll兩條直線平行的條件兩條直線平行的條件 如果兩直線垂直,這兩條直線的傾斜角有什么關系?斜率呢?112tan1cottan 如圖,設直線如圖,設直線l1 1與與l2 2的傾斜角的傾斜角分別為分別為1 1與與2 2,且,且1 12 2,y yl1 1O Ox xl2 21 12 2因為因為l1 1l2 2 ,所以,所以
12、2 2=90=90o o+1 1121kk所以 當k1k2 =-1時,直線l1與l2一定垂直嗎? 是 對于兩條互相垂直的直線l1和l2,若一條直線的斜率不存在,那么另一條直線的斜率如何? y yo ox xl2 2l1 1y yl1 1O Ox xl2 21 12 2 對于直線對于直線l1 1和和l2 2,其斜率,其斜率分別為分別為k k1 1,k k2 2,根據上述分析,根據上述分析可得什么結論?可得什么結論? 12121kkll兩條直線的垂直判定兩條直線的垂直判定 例例1 1 下列說法正確的是(下列說法正確的是( )若兩條直線斜率相等,則兩直線平行。若兩條直線斜率相等,則兩直線平行。若若l
13、 l1 1/l/l2 2, 則則k k1 1=k=k2 2 若兩條直線中有一條直線的斜率不存在,若兩條直線中有一條直線的斜率不存在, 另一條直線的斜率存在,則兩直線相交。另一條直線的斜率存在,則兩直線相交。若兩條直線的斜率都不存在,則兩直線平行。若兩條直線的斜率都不存在,則兩直線平行。 例例2 2 已知已知A A、B B、C C、D D四點的坐標,試判斷直線四點的坐標,試判斷直線ABAB與與CDCD的位置關系的位置關系. . (1)A(2,3),B(1)A(2,3),B(4,0) C(4,0) C(3,l),D(3,l),D(l,2)l,2); (2)A( (2)A(6,0),B(3,6) C
14、(0,3),D(6,6,0),B(3,6) C(0,3),D(6,6);6); (3)A( (3)A(6,0),B(3,6) C(0,3),D(6,6,0),B(3,6) C(0,3),D(6,6);6); (4)A(3,4),B(3,100) C( (4)A(3,4),B(3,100) C(10,40),D(10,40).10,40),D(10,40). 例例4.4.已知已知A(2,3),B(-4,0), P(-3,1),Q(-1,2),A(2,3),B(-4,0), P(-3,1),Q(-1,2),試判斷直線試判斷直線BABA與與PQPQ的位置關系,并證明你的結論。的位置關系,并證明你的結
15、論。AxyBPQo 例3.已知四邊形ABCD的四個頂點分別為A(0,0), B(2,1),C(4,2),D(2,3),試判斷四邊形ABCD的形狀,并給出證明.x xo oy yA AB BD DC C 例例5 5 已知過已知過A(-2,m)A(-2,m)和和B(m,4)B(m,4)的直線與斜率為的直線與斜率為- -2 2 的直線平行,則的直線平行,則m m 的值是的值是( )( )A A、-8 B-8 B、0 C0 C、2 D2 D、1010 例例6 6、已知、已知A(-6,0),B(3,6),P(0,3),Q(6,-6),A(-6,0),B(3,6),P(0,3),Q(6,-6),判斷直線判
16、斷直線ABAB與與PQPQ的位置關系。的位置關系。 例7 已知A(5,1),B(1,1),C(2,3),試判斷ABC的形狀.x xo oy yA AB BC C 例例8 8 已知點已知點A(m,1),B(-3,4),C(1,m),D(-1,m+1), A(m,1),B(-3,4),C(1,m),D(-1,m+1), 分別在下列條件下求實數分別在下列條件下求實數m m的值的值: : (1 1)直線)直線ABAB與與CDCD平行;平行; (2 2)直線)直線ABAB與與CDCD垂直垂直. .1下列命題中正確命題的個數是下列命題中正確命題的個數是()若兩條直線的斜率相等,則這兩條直線平行;若兩條直線
17、的斜率相等,則這兩條直線平行;若兩條直線平行,則這兩條直線的斜率相等;若兩條直線平行,則這兩條直線的斜率相等;若兩直線垂直,則這兩條直線的斜率之積為若兩直線垂直,則這兩條直線的斜率之積為1;若兩條直線平行,則這兩條直線的傾斜角相等;若兩條直線平行,則這兩條直線的傾斜角相等;若兩直線的斜率不存在,則這兩條直線平行若兩直線的斜率不存在,則這兩條直線平行A1B2C3D4AB()2直線直線 l1 的傾斜角為的傾斜角為 30,直線,直線 l1l2,則直線,則直線 l2 的斜率為的斜率為A. 3 B 3 C.33 D 33 3直線直線 l 平行于經過兩點平行于經過兩點 A(4,1),B(0,3)的直線,則
18、的直線,則直線的傾斜角為直線的傾斜角為()DA30B45C120D1354原點在直線原點在直線 l 上的射影是上的射影是 P(2,1),則,則 l 的斜率為的斜率為_.2練習:練習:重難點重難點 1兩直線平行兩直線平行1已知直線已知直線 l1:yk1xb1 , l2:yk2xb2,如果如果 l1l2,則,則 k1k2 且且 b1b2;如果如果 k1k2 且且 b1b2,則,則 l1l2.2當當 l1 與與 l2 的斜率都不存在且的斜率都不存在且 l1 與與 l2 不重合時,則不重合時,則 l1 與與 l2平行平行重難點重難點 2兩條直線垂直兩條直線垂直(1)當當 l1l2 時,它們的斜率之間的
19、關系有兩種情況:時,它們的斜率之間的關系有兩種情況:它們的斜率都存在且它們的斜率都存在且 k1k21;一條直線的斜率不存在,而另一條直線的斜率為一條直線的斜率不存在,而另一條直線的斜率為 0.(2)使用使用 l1l2k1k21 的前提是的前提是 l1 和和 l2 都有斜率且不等于都有斜率且不等于 0.注意:注意:在立體幾何中,兩直線的位置關系有平行、相交和異面在立體幾何中,兩直線的位置關系有平行、相交和異面(沒有重合關系沒有重合關系);而在本章中,在同一平面內,兩直線有重合、平行、;而在本章中,在同一平面內,兩直線有重合、平行、相交三種位置關系相交三種位置關系兩條直線平行的判定例例 1:已知直
20、線已知直線 l1 過點過點 A(3,a),B(a1,4),直線,直線 l2 過點過點 C(1,2),D(2,a2)(1)若若 l1l2,求,求 a 的值;的值;(2)若若 l1l2,求,求 a 的值的值思維突破:思維突破:由由 C、D 兩點的橫坐標可知兩點的橫坐標可知 l2 的斜率一定存在,由的斜率一定存在,由 A、B 兩點的橫坐標可知兩點的橫坐標可知 l1 的斜率可能存在也可能不存在,因此應的斜率可能存在也可能不存在,因此應對對 a 的取值進行討論的取值進行討論a3.(2)若若 l1l2,當當 k20 時,此時時,此時 a0,k11,顯然不符合題意;,顯然不符合題意;當當 k20 時,時,l
21、1 的斜率存在,此時的斜率存在,此時 k11,由于由于 l1l2,k1k21,解得,解得 a3.解:解:設直線設直線 l2的斜率為的斜率為 k2,則,則 k22( (a2) )1( (2) )a3, (1)若若 l1l2,則,則 k1a43( (a1) )(a4)1k2a3, 判斷兩條直線平行判斷兩條直線平行( 或垂直或垂直) 并尋求平行并尋求平行( 或垂直或垂直)的條件時,特的條件時,特別注意結論成立的前提條件對特殊情形要數形結合作出判斷別注意結論成立的前提條件對特殊情形要數形結合作出判斷變式訓練:變式訓練:試確定試確定 m 的值,使過點的值,使過點 A(m1,0)和點和點 B(5,m)的直
22、線與過點的直線與過點 C(4,3)和點和點 D(0,5)的直線平行的直線平行解:解:由題意得:由題意得:kAB,m05( (m1) )m6mkCD530( (4) )12由于由于ABCD,即,即 kABkCD, 所以所以m6m12,所以,所以 m2. 兩條直線垂直的判定例 2:已知 A(1,1),B(2,2),C(4,1),求點 D,使直線 ABCD 且直線 ADBC.y( (1) ) y112 1kAB2( (1) )213,kCD1y, 34x1y14x.又又ADBC, ,kADx1 x1,kBC ,42 2y1x112.由,則由,則 x17,y8,則,則 D(17,8)解:解:設設 D(
23、x,y),ABCD,變式訓練:變式訓練:已知三點已知三點 A(m1,2),B(1,1),C(3,m2m1),若若 ABBC,求,求 m 的值的值m2m11 m2m2則則 k231 31,又知又知 xAxBm2,當當m20,即即m2時時, ,k1不存在不存在, ,此時此時k20,則,則ABBC;解:解:設設 AB、BC 的斜率分別為的斜率分別為 k1、k2,故若故若 ABBC,則,則 m2 或或 m3.當當 m20,即,即 m2 時,時,k11m2. 由由 k1k2m2m221m21,得,得 m3, 斷四邊形 ABCD 是否為梯形?如果是梯形,是否是直角梯形?平行和垂直關系的綜合應用又又直線直線
24、 AB 和直線和直線 CD 不重合,不重合,ABCD.解:解:直線直線 AB的斜率的斜率 kAB51202, 直線直線 CD 的斜率的斜率 kCD235( (3) )145( (1) )2,kABkCD. 即直線即直線 AD 與直線與直線 BC 不平行不平行四邊形四邊形 ABCD 是梯形是梯形ABBC. 梯形梯形 ABCD 是直角梯是直角梯形形直線直線AD的斜率的斜率kAD31104, ,直線直線BC的斜率的斜率kBC2355145212kADkBC又又kABkBC1221, 從而直線 BC 與 DA 不平行,四邊形 ABCD 是梯形又kBC37225136,kDA342(4)76,kBCkD
25、A. D(4,4)四點所得的四邊形是梯形四點所得的四邊形是梯形變式訓練:變式訓練:求證:順次連接求證:順次連接 A(2,3),B 5,72,C(2,3), (1)判斷一個四邊形為梯形,需要兩個條件:有一對相互平行的判斷一個四邊形為梯形,需要兩個條件:有一對相互平行的邊;另有一對不平行的邊邊;另有一對不平行的邊(2)判斷一個四邊形為直角梯形,首先需判斷一個四邊形為直角梯形,首先需要判斷它是一個梯形,然后證明它有一個角為直角要判斷它是一個梯形,然后證明它有一個角為直角注意陷阱注意陷阱:在直角在直角ABC 中,中,C 是直角,是直角,A(1,3),B(4,2),點點 C 在坐標軸上,求點在坐標軸上,
26、求點 C 的坐標的坐標則則 kAC3x1,kBC2x4,ACBC,kACkBC1,即,即6( (x1)( )(x4) )1,x1 或或 x2,故所求點為,故所求點為 C(1,0)或或 C(2,0)正解:正解:(1)當點當點 C 在在 x 軸上時,設軸上時,設 C(x,0),錯因剖析:錯因剖析:沒有分類討論,主觀認為點沒有分類討論,主觀認為點 C 在在 x 軸上導致漏解軸上導致漏解(2)當點當點 C 在在 y 軸上時,設軸上時,設 C(0,y),由,由 ACBC,知知 kACkBC1,故,故y301y2041, y5 172或或 y5 172. 故故 C 0,5 172或或 C 0,5 172.
27、綜上所述:綜上所述: C(1,0) 或或C(2,0) 或或或或為所求為所求 C 0,5 172C 0,5 172變式訓練:變式訓練:已知點 A(2,5),B(6,6),點 P 在 y 軸上,且APB90,試求點 P 的坐標即即b( (5) ) b6 1,解得,解得 b7 或或 b6.0( (2) ) 06所以點所以點 P 的坐標為的坐標為(0,7)或或(0,6)解:解:設點設點 P 的坐標為的坐標為(0,b),則,則 kAPkBP1,1.兩條直線平行的判定2.兩條直線垂直的判定3.思想方法 傾斜角、平行是幾何概念,傾斜角、平行是幾何概念, 坐標、坐標、斜率是代數概念,解析幾何的本質是用斜率是代
28、數概念,解析幾何的本質是用代數方法來研究幾何問題代數方法來研究幾何問題. .小結小結P89練習:1,2.P90習題3.1 A組:8. B組:3,4.作業(yè)作業(yè)直線的方程直線的方程3.23.2主要內容3.2.2 直線的兩點式方程3.2.3 直線的一般式方程3.2.1 直線的點斜式方程直線的點斜式方程直線的點斜式方程3.2.13.2.1 在平面直角坐標系內,如果給定一條直線 經過的一個點 和斜率 ,能否將直線上所有的點的坐標 滿足的關系表示出來呢?()000, yxPlk()yx,xyOl0P,00 xxyyk()00 xxkyy即:即:xyOl0P點斜式方程點斜式方程點斜式方程點斜式方程 直線 經
29、過點 ,且斜率為 ,設點 是直線上不同于點 的任意一點,因為直線 的斜率為 ,由斜率公式得:()000, yxPk()yxP,0PlklP (1 1)過點)過點 ,斜率是,斜率是 的直線的直線 上的上的點,其坐標都滿足方程點,其坐標都滿足方程 嗎?嗎?()00 xxkyy()000, yxPkl (2 2)坐標滿足方程)坐標滿足方程 的點都的點都在過點在過點 斜率為斜率為 的直線的直線 上嗎?上嗎?()00 xxkyy()000, yxPkl 上述兩條都成立,所以這個方程上述兩條都成立,所以這個方程就是過點就是過點 斜率為斜率為 的直線的直線 的方程的方程k()000, yxPl()00 xx
30、kyy點斜式方程點斜式方程x00 yy0yy ,或,或x xy yO Ol l0Pl的方程就是的方程就是(1 1) 軸所在直線的方程是什么?軸所在直線的方程是什么? 當直線當直線 的傾斜角為的傾斜角為 時,即時,即 這時直線這時直線 與與 軸軸平行或重合平行或重合,ll000tanx000tanl000tanxl000tan000tanl000tanxl000tan(2 2) 軸所在直線的方程是什么?軸所在直線的方程是什么?y00 xx0 xx ,或,或當直線當直線 的傾斜角為的傾斜角為 時,直線沒有斜率,這時,直線沒有斜率,這時時, ,直線直線 與與 軸平行或重合,它的方程不能用點斜軸平行或
31、重合,它的方程不能用點斜式表示這時,直線式表示這時,直線 上每一點的橫坐標都等于上每一點的橫坐標都等于 ,所以它的方程就是所以它的方程就是ll90ly0 xxyOl0P 例例1 直線直線 l 經過點經過點P0(-2,3),且傾斜角為且傾斜角為600,求直線求直線l的點斜式方程,并畫出直線的點斜式方程,并畫出直線 l. P P0 0P Px xy yo o 如果直線如果直線 的斜率為的斜率為 ,且與,且與 軸的交點為軸的交點為得直線的點斜式方程,得直線的點斜式方程,lyk()0 xkby()b, 0 也就是:也就是:bkxyxyOl0Pb 我們把直線與我們把直線與 軸交點的縱坐標軸交點的縱坐標叫
32、做直線在叫做直線在y y軸上的軸上的截距。截距。y 該方程由直線的斜率與它在該方程由直線的斜率與它在 軸上的截距確定,軸上的截距確定,所以該方程叫做直線的所以該方程叫做直線的斜截式方程斜截式方程,簡稱,簡稱斜截式斜截式. .y直線的斜截式方程直線的斜截式方程 例例2 2 已知直線已知直線 , 試討論試討論:(:(1 1) 的條件是什么?(的條件是什么?(2 2) 的條件是什么?的條件是什么?21/ll222111:bxkylbxkyl,21ll 解:解:222111:bxkylbxkyl,. 121kk21/ll21ll 21kk 21bb ,且且 ; 例3 求下列直線的斜截式方程: (1)經
33、過點A(-1,2),且與直線 y=3x+1垂直; (2)斜率為-2,且在x軸上的截距為5. 例例4 4 已知直線已知直線 l 的斜率為的斜率為 ,且與兩坐標軸圍,且與兩坐標軸圍成的三角形的面積為成的三角形的面積為4 4,求直線,求直線l的方程的方程. .211. 直線的點斜式方程:2. 直線的斜截式方程:()00 xxkyybkxy小結000yyyy或000 xxxx或直線和x軸平行時,傾斜角=0直線與x軸垂直時,傾斜角=903. 特殊情況作業(yè)P95練習:1,2,3,4P100習題3.2 A組:1,5,6,10.3.2.23.2.2直線的兩點式方程直線的兩點式方程 已知直線經過兩點已知直線經過
34、兩點P P1 1(x(x1 1,y,y1 1) ),P P2 2(x(x2,2,y y2 2) ),(x(x1 1 x x2 2 ,y,y1 1 y y2 2),),如何求出這兩個點的直線方程呢?如何求出這兩個點的直線方程呢? 經過一點,且已知斜率的直線,可以寫出它的點斜式方程. 可以先求出斜率,再選擇一點,得到點斜式方程.兩點式方程兩點式方程xylP2(x2,y2)2121yykxx211121()yyyyxxxx兩點式P1(x1,y1)112121yyxxyyxx00()yyk xx代入得斜率根據兩點根據兩點P P1 1(x(x1 1,y,y1 1) ),P P2 2(x(x2 2,y,y
35、2 2) ),截距式方程xylA(a,0)截距式截距式B(0,b)解:代入兩點式方程得化簡得1xyab橫截距橫截距縱截距縱截距 例1. 已知直線經過點A(a,0),B(0,b),a0,b0,求直線方程aaxby000中點坐標公式 已知兩點已知兩點P P1 1(x(x1 1,y,y1 1) ),P P2 2(x(x2,2,y y2 2) )則線段則線段P P1 1P P2 2的中的中點點P P0 0的坐標是什么?的坐標是什么?1212(,)22xxyyxyA(x1,y1)B(x2,y2)中點中點121222xxxyyyP0的坐標為 例例2 已知三角形的三個頂點已知三角形的三個頂點 A(-5,0)
36、,),B(3,-3),),C(0,2),求),求BC邊所在直線的方程,邊所在直線的方程,以及該邊上中線所在直線的方程以及該邊上中線所在直線的方程.A AB Bx xy yo oC CM M 例例3 3.求經過點求經過點P(-5P(-5,4)4),且在兩坐標軸上的截,且在兩坐標軸上的截距相等的直線方程距相等的直線方程. .P Px xy yo o 例例4 4 求經過點求經過點P(0P(0,3)3),且在兩坐標軸上的截距,且在兩坐標軸上的截距之和為之和為2 2的直線方程的直線方程. . 例例5. 5. 已知直線已知直線 l 經過點經過點P(1P(1,2)2),并且點,并且點A(2A(2,3)3)和
37、點和點 B(4B(4,-5)-5)到直線到直線l 的距離相等,求的距離相等,求直線直線l 的方程的方程. .P Px xy yo oB BA A直線方程小結直線方程小結兩點坐標兩點式點斜式兩個截距截距式1xyab112121yyxxyyxx00()yyk xxP97練習:1,2.P100習題3.2A組:3,4,8,9,11.作業(yè)作業(yè)3.2.33.2.3直線的一般式方程直線的一般式方程 1. 平面直角坐標系中的每一條直線都可以用一個關于x,y的二元一次方程表示嗎? 2. 每一個關于x,y的二元一次方程都表示一條直線嗎?討論 1. 直線的點斜式、斜截式、兩點式、截距式都是關于X,y的二元一次方程
38、2. 經過點P(x0,y0)且斜率不存在的直線的方程: x-x0=0 可以看成y的系數為0的二元一次方程.3.對于二元一次方程 Ax+By+C=0(A,B不全為零)BCxBAy1)當B0時可化為 表示經過點(0, ),斜率k為 的直線.BCBA2) 當B=0時,A0,方程可化為ACx表示垂直于x軸的直線.直線的一般式方程直線的一般式方程(其中A,B不同時為0)0A xB yC1. 所有的直線都可以用二元一次方程表示2. 所有二元一次方程都表示直線此方程叫做直線的一般式方程 例1 已知直線經過點A(6,-4),斜率為 ,求直線的點斜式和一般式方程.43 例2 把直線l 的一般式方程 x-2y+6
39、=0化成斜截式,求出直線l 的斜率以及它在x軸與y軸上的截距,并畫出圖形.兩條直線平行和垂直的條件1111:0lAxB yC2222:0lA xB yC11112222/ABCllABC1212120llA AB B平行垂直重合212121CCBBAA 例例3 3 已知直線已知直線 l1 1:ax+(x+(a+1)y-+1)y-a=0=0 和和 l2 2:( (a+2)x+2(+2)x+2(a+1)y-4=0+1)y-4=0, 若若l1 1/l2 2,求,求a的值的值. . 例例4 4 已知直線已知直線l1 1:x-x-ay-1=0y-1=0和和l2 2: :a2 2x+y+2=0 x+y+2
40、=0,若若l1 1l2 2,求,求a的值的值. .小結小結點斜式00()yyk xx斜率和一點坐標斜截式y(tǒng)kxb斜率k和截距b兩點坐標兩點式點斜式兩個截距截距式1xyab112121yyxxyyxx00()yyk xx一般式一般式0AxByC小結小結1.直線的點斜式、斜截式、兩點式、截距式都可以化成一般式. 反之不一定.2. 特殊的直線方程 如x+2=0, 2y-3=0. 有時不存在點斜式或斜截式、兩點式、截距式.3. 根據一般方程也能很快判斷兩條直線的位置關系.4. 一般不特別指明時直線方程的結果都要化成一般式.P99-100練習:1,2.P101習題3.2B組:1,2,5.作業(yè)3.33.3
41、直線的交點坐標與直線的交點坐標與距離公式距離公式主要內容3.3.2 兩點間的距離3.3.3 點到直線的距離3.3.1 兩條直線的交點坐標3.3.4兩條平行直線間的距離3.3.13.3.1兩條直線的交點坐標兩條直線的交點坐標 一般地,若直線l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0相交,如何求其交點坐標? 用代數方法求兩條直線的交點坐標,只需寫出這兩條直線的方程,然后聯立求解.幾何概念與代數表示幾何元素及關系幾何元素及關系代數表示代數表示點點A A直線直線l點點A A在直線在直線l上上直線直線l1 1與與l2 2的交點是的交點是A A( , )A a b:0lAxByC:0l
42、AaBbCA A的坐標滿足方程的坐標滿足方程A A的坐標是方程組的解的坐標是方程組的解11122200AxB yCA xB yC 對于兩條直線 和 , 若方程組 0:1111CyBxAl0:2222CyBxAl00222111CyBxACyBxA 有唯一解,有無數組解,無解,則兩直線的有唯一解,有無數組解,無解,則兩直線的位置關系如何?位置關系如何?兩直線有一個交點, 重合、平行1: 3420lxy2:220lxy例1. 求下列兩條直線的交點坐標當當 變化時,方程變化時,方程342(22)0 xyxy 表示什么圖形?圖形有何特點?表示什么圖形?圖形有何特點?表示的直線包括過交點表示的直線包括過
43、交點M M(-2-2,2 2)的一族直線)的一族直線 例例2 2 判斷下列各對直線的位置關系,如果相交,判斷下列各對直線的位置關系,如果相交,求出其交點的坐標求出其交點的坐標. 10,lx y :233 10 0;lxy :1340,lxy:26210;lxy :13450,lxy :268100.lxy:(1 1)(2 2)(3 3) 例例3 3 求經過兩直線求經過兩直線3x+2y+1=0 3x+2y+1=0 和和 2x-3y+5=02x-3y+5=0的交的交點,且斜率為點,且斜率為3 3的直線方程的直線方程. . 例4.設直線y=k(x+3)-2和x+4y-4=0相交,且交點P在第一象限,
44、求k的取值范圍.x xy yo oB BA AP P小結 1.求兩條直線的交點坐標 2.任意兩條直線可能只有一個公共點,也可能沒有公共點(平行) 3.任意給兩個直線方程,其對應的方程組得解有三種可能可能: 1)有惟一解 2)無解 3)無數多解 4.直線族方程的應用作業(yè)P109 習題3.3A組:1,3,5.P110 習題3.3B組:1.3.3.23.3.2兩點間的距離兩點間的距離 已知平面上兩點已知平面上兩點P P1 1(x(x1 1,y y1 1) )和和P P2 2(x(x2 2,y y2 2) ),如何,如何點點P P1 1和和P P2 2的距離的距離|P|P1 1P P2 2| |?xy
45、P1(x1,y1)P2(x2,y2)O兩點間距離公式推導xyP1(x1,y1)P2(x2, y2)Q(x2,y1)O221| |PQyy121| |PQxxx2y2x1y1兩點間距離公式22122121|()()PPxxyy22|OPxy特別地,點P(x,y)到原點(0,0)的距離為 一般地,已知平面上兩點P1(x1, )和P2(x2,y2),利用上述方法求點P1和P2的距離為1y 例例1 1 已知點已知點 和和 , , 在在x x軸上軸上求一點求一點P P,使,使|PA|=|PB|PA|=|PB|,并求,并求|PA|PA|的值的值. .( 1,2)A )72,(B 例例2 2 證明平行四邊形
46、四條邊的平方和等于兩條對證明平行四邊形四條邊的平方和等于兩條對角線的平方和角線的平方和. .xyA(0,0)A(0,0)B(a,0)B(a,0)C (a+b,c)C (a+b,c)D (b,c)D (b,c) 證明:以A為原點,AB為x軸建立直角坐標系.則四個頂點坐標為A(0,0),B(a,0),D(b,c),C(a+b,c)建立坐標系,用坐標表示有關的量。xyABCD(0,0)(a,0)(b,c)(a+b,c)22|ABa22|CDa222|()ACabc222|ADbc222|BCbc222|()BDbac2222222|2()ABCDADBCabc22222|2()ACBDabc2222
47、22|ABCDADBCACBD 因此,平行四邊形四條邊的平方和等于兩條對角因此,平行四邊形四條邊的平方和等于兩條對角線的平方和線的平方和. .例2題解 用用“坐標法坐標法”解決有關幾何問題的基本步驟:解決有關幾何問題的基本步驟:第一步;建立坐標系,用坐標系表示有關的量第二步:進行有關代數運算第三步:把代數運算結果“翻譯”成幾何關系小結1.兩點間距離公式2.坐標法第一步:建立坐標系,用坐標表示有關的量第二步:進行有關代數運算第三步:把代數運算結果翻譯成幾何關系22122121|()()PPxxyy拓展)(1212xxkyy 已知平面上兩點P1(x1,y1)和P2(x2,y2),直線P1P2的斜率
48、為k,則 y2-y1可怎樣表示?從而點P1和P2的距離公式可作怎樣的變形?2122122111|1|kyykxxPP 例3 設直線2x-y+1=0與拋物線 相交于A、B兩點,求|AB|的值.234y xx P106練習:1,2. P110習題3.3 A組:6,7,8.作業(yè)作業(yè)3.3.3點到直線的距離點到直線的距離 已知點已知點P P0 0(x(x0 0,y y0 0) )和直線和直線l:Ax +By +C=0Ax +By +C=0,如,如何求點何求點P P到直線到直線 l 的距離?的距離? x xo oP P0 0Q Qly y 點點P P到直線到直線 l 的距離,是指從點的距離,是指從點P
49、P0 0到直線到直線 l 的的垂線段垂線段P P0 0Q Q的長度,其中的長度,其中Q Q是垂足是垂足分析思路一:直接法分析思路一:直接法直線直線 的方程的方程l直線直線 的斜率的斜率lQPl0直線直線 的方程的方程l直線直線 的方程的方程QP0QP0點點 之間的距離之間的距離 (點(點 到到 的距離)的距離)QP、00Pl點點 的坐標的坐標0P直線直線 的斜率的斜率QP0點點 的坐標的坐標0P點點 的坐標的坐標Qx xy yO O0PlQxyO0PlQ面積法求出面積法求出P0Q 求出點求出點R 的坐標的坐標求出點求出點S 的坐標的坐標利用勾股定理求出利用勾股定理求出SR 分析思路二:用直角三角形的面積間接求法RSd求出求出P0R 求出求出P0S SR
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 綏化智能小區(qū)管理辦法
- 繼續(xù)教育學院管理辦法
- 育嬰師職業(yè)道德培訓課件
- 肩周炎中醫(yī)講座課件
- 機房安全管理培訓課件
- 復印五年級數學試卷
- 阜陽一模高三數學試卷
- 東營三模高考數學試卷
- 高三五調數學試卷
- 高起本高等數學試卷
- 2025年廣西中考語文試題卷(含答案)
- 2025年南京市中考數學真題試卷
- 2024年深圳市中考歷史試卷真題(含答案解析)
- 湖北省 公路工程試驗檢測設備期間核查規(guī)范DB42∕T 1544-2020
- 基礎會計教材電子版
- 四川省地質災害治理工程常用資料表格
- 患者隱私保護課件
- RFJ0132010人民防空工程防化設計規(guī)范
- CA6140車床杠桿工藝設計說明書完全版
- T_CHES 17-2018 水井報廢與處理技術導則
- 酒店住宿賬單模板
評論
0/150
提交評論