

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2019-2020年九年級(jí)數(shù)學(xué)下冊(cè)第二十八章三角函數(shù)全章教案(六課時(shí))(一)教學(xué)三維目標(biāo).知識(shí)目標(biāo)初步了解正弦、余弦、正切概念;能較正確地用siaA、cosA、tanA表示直角三角形中兩邊的比;熟記功30°、45°、60°角的三角函數(shù),并能根據(jù)這些值說出對(duì)應(yīng)的銳角度數(shù)。二. 能力目標(biāo)逐步培養(yǎng)學(xué)生觀察、比較、分析,概括的思維能力。三. 情感目標(biāo)提高學(xué)生對(duì)幾何圖形美的認(rèn)識(shí)。(二).教材分析:1教學(xué)重點(diǎn):正弦,余弦,正切概念2.教學(xué)難點(diǎn):用含有幾個(gè)字母的符號(hào)組siaA、cosA、tanA表示正弦,余弦,正切(三)教學(xué)程序一. 探究活動(dòng)1. 課本引入問題,再結(jié)合特殊角30
2、°、45°、60°的直角三角形探究直角三角形的邊角關(guān)系。2歸納三角函數(shù)定義。siaA=,cosA=,tanA=3例1.求如圖所示的Rt/ABC中的siaA,cosA,tanA的值。.探究活動(dòng)二1.讓學(xué)生畫30°45°60°的直角三角形,分別求sia30°cos45°tan60°歸納結(jié)果30°45°60°siaAcosAtanA2. 求下列各式的值(1)sia30°+cos30°(2)sia45°-cos30°(3)+ta60°
3、-tan30°三拓展提高1.P82例4.(略)四小結(jié)五作業(yè)課本p862,3,6,7,8,10第二課時(shí)課題解直角三角形應(yīng)用(一)一教學(xué)三維目標(biāo)(一)知識(shí)目標(biāo)使學(xué)生理解直角三角形中五個(gè)元素的關(guān)系,會(huì)運(yùn)用勾股定理,直角三角形的兩個(gè)銳角互余及銳角三角函數(shù)解直角三角形(二)能力訓(xùn)練點(diǎn)通過綜合運(yùn)用勾股定理,直角三角形的兩個(gè)銳角互余及銳角三角函數(shù)解直角三角形,逐步培養(yǎng)學(xué)生分析問題、解決問題的能力(三)情感目標(biāo)滲透數(shù)形結(jié)合的數(shù)學(xué)思想,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣二、教學(xué)重點(diǎn)、難點(diǎn)和疑點(diǎn)1重點(diǎn):直角三角形的解法2難點(diǎn):三角函數(shù)在解直角三角形中的靈活運(yùn)用3疑點(diǎn):學(xué)生可能不理解在已知的兩個(gè)元素中,為什么至少有一
4、個(gè)是邊三、教學(xué)過程(一)知識(shí)回顧1在三角形中共有幾個(gè)元素?2直角三角形ABC中,ZC=90°,a、b、c、ZA、ZB這五個(gè)元素間有哪些等量關(guān)系呢?(1)邊角之間關(guān)系sinA=cosA=tanA(2)三邊之間關(guān)系a2+b2=c2(勾股定理)銳角之間關(guān)系ZA+ZB=90°.以上三點(diǎn)正是解直角三角形的依據(jù),通過復(fù)習(xí),使學(xué)生便于應(yīng)用(二)探究活動(dòng)1.我們已掌握RtAABC的邊角關(guān)系、三邊關(guān)系、角角關(guān)系,利用這些關(guān)系,在知道其中的兩個(gè)元素(至少有一個(gè)是邊)后,就可求出其余的元素這樣的導(dǎo)語既可以使學(xué)生大概了解解直角三角形的概念,同時(shí)又陷入思考,為什么兩個(gè)已知元素中必有一條邊呢?激發(fā)了學(xué)
5、生的學(xué)習(xí)熱情2教師在學(xué)生思考后,繼續(xù)引導(dǎo)“為什么兩個(gè)已知元素中至少有一條邊?”讓全體學(xué)生的思維目標(biāo)一致,在作出準(zhǔn)確回答后,教師請(qǐng)學(xué)生概括什么是解直角三角形?(由直角三角形中除直角外的兩個(gè)已知元素,求出所有未知元素的過程,叫做解直角三角形)3例題評(píng)析例1在厶ABC中,ZC為直角,ZA、ZB、ZC所對(duì)的邊分別為a、b、c,且b=a=,解這個(gè)三角形例2在AABC中,ZC為直角,ZA、ZB、ZC所對(duì)的邊分別為a、b、c,且b=20=35,解這個(gè)三角形(精確到0.1)解直角三角形的方法很多,靈活多樣,學(xué)生完全可以自己解決,但例題具有示范作用因此,此題在處理時(shí),首先,應(yīng)讓學(xué)生獨(dú)立完成,培養(yǎng)其分析問題、解決
6、問題能力,同時(shí)滲透數(shù)形結(jié)合的思想其次,教師組織學(xué)生比較各種方法中哪些較好,選一種板演完成之后引導(dǎo)學(xué)生小結(jié)“已知一邊一角,如何解直角三角形?”答:先求另外一角,然后選取恰當(dāng)?shù)暮瘮?shù)關(guān)系式求另兩邊計(jì)算時(shí),利用所求的量如不比原始數(shù)據(jù)簡(jiǎn)便的話,最好用題中原始數(shù)據(jù)計(jì)算,這樣誤差小些,也比較可靠,防止第一步錯(cuò)導(dǎo)致一錯(cuò)到底例3在RtAABC中,a=104.0,b=20.49,解這個(gè)三角形.(三)鞏固練習(xí)在厶ABC中,ZC為直角,AC=6,的平分線AD=4,解此直角三角形。解直角三角形是解實(shí)際應(yīng)用題的基礎(chǔ),因此必須使學(xué)生熟練掌握.為此,教材配備了練習(xí)針對(duì)各種條件,使學(xué)生熟練解直角三角形,并培養(yǎng)學(xué)生運(yùn)算能力.(四
7、)總結(jié)與擴(kuò)展請(qǐng)學(xué)生小結(jié):1在直角三角形中,除直角外還有五個(gè)元素,知道兩個(gè)元素(至少有一個(gè)是邊),就可以求出另三個(gè)元素.2解決問題要結(jié)合圖形。四、布置作業(yè)p96第1,2題第三課時(shí)解直三角形應(yīng)用(二一教學(xué)三維目標(biāo)(一)、知識(shí)目標(biāo)使學(xué)生了解仰角、俯角的概念,使學(xué)生根據(jù)直角三角形的知識(shí)解決實(shí)際問題(二)、能力目標(biāo)逐步培養(yǎng)分析問題、解決問題的能力二、教學(xué)重點(diǎn)、難點(diǎn)和疑點(diǎn)1重點(diǎn):要求學(xué)生善于將某些實(shí)際問題中的數(shù)量關(guān)系,歸結(jié)為直角三角形中元素之間的關(guān)系從而解決問題2難點(diǎn):要求學(xué)生善于將某些實(shí)際問題中的數(shù)量關(guān)系,歸結(jié)為直角三角形中元素之間的關(guān)系從而解決問題三、教學(xué)過程(一)回憶知識(shí)1解直角三角形指什么?2解直
8、角三角形主要依據(jù)什么?勾股定理:a2+b2=c2(2)銳角之間的關(guān)系:ZA+ZB=90°(3)邊角之間的關(guān)系:tanA=鉛垂線0視線(二)新授概念1仰角、俯角當(dāng)我們進(jìn)行測(cè)量時(shí),在視線與水平線所成的角中,視線在水平線上方的角叫做仰角,在水平線下方的角叫做俯角教學(xué)時(shí),可以讓學(xué)生仰視燈或俯視桌面以體會(huì)仰角與俯角的意義如圖(6-16),某飛機(jī)于空中A處探測(cè)到目標(biāo)C,此時(shí)飛行高度AC=1200米,從飛機(jī)上看地平面控制點(diǎn)B的俯角a=16°31,求飛機(jī)A到控制點(diǎn)B距離(精確到1米)解:在RtAABC中sinB=AB=4221(米)答:飛機(jī)A到控制點(diǎn)B的距離約為4221米.例2.xx年10
9、月15日“神州”5號(hào)載人航天飛船發(fā)射成功。當(dāng)飛船完成變軌后,就在離地形表面350km的圓形軌道上運(yùn)行。如圖,當(dāng)飛船運(yùn)行到地球表面上P點(diǎn)的正上方時(shí),從飛船上能直接看到地球上最遠(yuǎn)的點(diǎn)在什么位置?這樣的最遠(yuǎn)點(diǎn)與P點(diǎn)的距離是多少?(地球半徑約為6400km,結(jié)果精確到0.1km)分析:從飛船上能看到的地球上最遠(yuǎn)的點(diǎn),應(yīng)是視線與地球相切時(shí)的切點(diǎn)。將問題放到直角三角形FOQ中解決。解決此問題的關(guān)鍵是在于把它轉(zhuǎn)化為數(shù)學(xué)問題,利用解直角三角形知識(shí)來解決,在此之前,學(xué)生曾經(jīng)接觸到通過把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題后,用數(shù)學(xué)方法來解決問題的方法,但不太熟練因此,解決此題的關(guān)鍵是轉(zhuǎn)化實(shí)際問題為數(shù)學(xué)問題,轉(zhuǎn)化過程中著重請(qǐng)學(xué)
10、生畫幾何圖形,并說出題目中每句話對(duì)應(yīng)圖中哪個(gè)角或邊(包括已知什么和求什么),會(huì)利用平行線的內(nèi)錯(cuò)角相等的性質(zhì)由已知的俯角a得出RtAABC中的ZABC,進(jìn)而利用解直角三角形的知識(shí)就可以解此題了例1小結(jié):本章引言中的例子和例1正好屬于應(yīng)用同一關(guān)系式sinA=來解決的兩個(gè)實(shí)際問題即已知和斜邊,求Za的對(duì)邊;以及已知Za和對(duì)邊,求斜邊.(三)鞏固練習(xí)1. 熱氣球的探測(cè)器顯示,從熱氣球看一棟高樓頂部的仰角為,看這棟樓底部的俯角為60,熱氣球與高樓的水平距離為120m,這棟高樓有多高(結(jié)果精確到0.1'm)2.如圖6-17,某海島上的觀察所A發(fā)現(xiàn)海上某船只B并測(cè)得其俯角a=80°14.已
11、知觀察所A的標(biāo)高(當(dāng)水位為0m時(shí)的高度)為43.74m,當(dāng)時(shí)水位為+2.63m,求觀察所A到船只B的水平距離BC(精確到1m)教師在學(xué)生充分地思考后,應(yīng)引導(dǎo)學(xué)生分析:(1).誰能將實(shí)物圖形抽象為幾何圖形?請(qǐng)一名同學(xué)上黑板畫出來.2)請(qǐng)學(xué)生結(jié)合圖形獨(dú)立完成。3如圖6-19,已知A米,求BD的高及水平距離CD.此題在例1的基礎(chǔ)上,又加深了一步,須由A作一條平行于CD的直線交BD于E,構(gòu)造出RtABE,然后進(jìn)一步求出AE、BE,進(jìn)而求出BD與CD.設(shè)置此題,既使成績(jī)較好的學(xué)生有足夠的訓(xùn)練,同時(shí)對(duì)較差學(xué)生又是鞏固,達(dá)到分層次教學(xué)的目的練習(xí):為測(cè)量松樹AB的高度,一個(gè)人站在距松樹15米的E處,測(cè)得仰角Z
12、ACD=52°,已知人的高度為1.72米,求樹高(精確到0.01米)要求學(xué)生根據(jù)題意能畫圖,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,利用解直角三角形的知識(shí)來解決它(四)總結(jié)與擴(kuò)展請(qǐng)學(xué)生總結(jié):本節(jié)課通過兩個(gè)例題的講解,要求同學(xué)們會(huì)將某些實(shí)際問題轉(zhuǎn)化為解直角三角形問題去解決;今后,我們要善于用數(shù)學(xué)知識(shí)解決實(shí)際問題四、布置作業(yè)1課本p96第3,.4,.6題第四課時(shí)解直三角形應(yīng)用(三)(一)教學(xué)三維目標(biāo)(一)知識(shí)目標(biāo)使學(xué)生會(huì)把實(shí)際問題轉(zhuǎn)化為解直角三角形問題,從而會(huì)把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題來解決(二)能力目標(biāo)逐步培養(yǎng)學(xué)生分析問題、解決問題的能力(三)情感目標(biāo)滲透數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的觀點(diǎn),培養(yǎng)學(xué)
13、生用數(shù)學(xué)的意識(shí)二、教學(xué)重點(diǎn)、難點(diǎn)1重點(diǎn):要求學(xué)生善于將某些實(shí)際問題中的數(shù)量關(guān)系,歸結(jié)為直角三角形元素之間的關(guān)系,從而利用所學(xué)知識(shí)把實(shí)際問題解決2難點(diǎn):要求學(xué)生善于將某些實(shí)際問題中的數(shù)量關(guān)系,歸結(jié)為直角三角形中元素之間的關(guān)系,從而利用所學(xué)知識(shí)把實(shí)際問題解決三、教學(xué)過程1導(dǎo)入新課上節(jié)課我們解決的實(shí)際問題是應(yīng)用正弦及余弦解直角三角形,在實(shí)際問題中有時(shí)還經(jīng)常應(yīng)用正切和余切來解直角三角形,從而使問題得到解決2例題分析例1如圖6-21,廠房屋頂人字架(等腰三角形)的跨度為10米,ZA-26°,求中柱BC(C為底邊中點(diǎn))和上弦AB的長(zhǎng)(精確到0.01米).分析:上圖是本題的示意圖,同學(xué)們對(duì)照?qǐng)D形,
14、根據(jù)題意思考題目中的每句話對(duì)應(yīng)圖中的哪個(gè)角或邊,本題已知什么,求什么?由題意知,ABC為直角三角形,ZACB=90°,ZA=26°,AC=5米,可利用解RtAABC的方法求出BC和AB學(xué)生在把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題后,大部分學(xué)生可自行完成例題小結(jié):求出中柱BC的長(zhǎng)為2.44米后,我們也可以利用正弦計(jì)算上弦AB的長(zhǎng)。如果在引導(dǎo)學(xué)生討論后小結(jié),效果會(huì)更好,不僅使學(xué)生掌握選何關(guān)系式,更重要的是知道為什么選這個(gè)關(guān)系式,以培養(yǎng)學(xué)生分析問題、解決問題的能力及計(jì)算能力,形成良好的學(xué)習(xí)習(xí)慣另外,本題是把解等腰三角形的問題轉(zhuǎn)化為直角三角形的問題,滲透了轉(zhuǎn)化的數(shù)學(xué)思想例2.如圖,一艘海輪位于燈
15、塔P的北偏東65方向,距離燈塔80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南東34方向上的B處。這時(shí),海輪所在的B處距離燈塔P有多遠(yuǎn)(精確到0.01海里)?引導(dǎo)學(xué)生根據(jù)示意圖,說明本題已知什么,求什么,利用哪個(gè)三角形來求解,用正弦、余弦、正切、余切中的哪一種解較為簡(jiǎn)便?3鞏固練習(xí)為測(cè)量松樹AB的高度,一個(gè)人站在距松樹15米的E處,測(cè)得仰角ZACD=52°,已知人的高度是1.72米,求樹高(精確到0.01米)首先請(qǐng)學(xué)生結(jié)合題意畫幾何圖形,并把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題RtAACD中,ZD=RtZ,ZACD=52°,CD=BE=15米,CE=DB=1.72米,求AB
16、?(三)總結(jié)與擴(kuò)展請(qǐng)學(xué)生總結(jié):通過學(xué)習(xí)兩個(gè)例題,初步學(xué)會(huì)把一些實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,通過解直角三角形來解決,具體說,本節(jié)課通過讓學(xué)生把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,利用正切或余切解直角三角形,從而把問題解決本課涉及到一種重要教學(xué)思想:轉(zhuǎn)化思想四、布置作業(yè)1某一時(shí)刻,太陽光線與地平面的夾角為78°,此時(shí)測(cè)得煙囪的影長(zhǎng)為5米,求煙囪的高(精確到0.1米)2. 如圖6-24,在高出地平面50米的小山上有一塔AB,在地面D測(cè)得塔頂A和塔基B的仰面分別為50°和45°,求塔高3在寬為30米的街道東西兩旁各有一樓房,從東樓底望西樓頂仰角為45°,從西樓頂望東樓頂,俯角為
17、10°,求西樓高(精確到0.1米)第五課時(shí)解直三角形應(yīng)用(四)一教學(xué)三維目標(biāo)(一)知識(shí)目標(biāo)致使學(xué)生懂得什么是橫斷面圖,能把一些較復(fù)雜的圖形轉(zhuǎn)化為解直角三角形的問題(二)能力目標(biāo)逐步培養(yǎng)學(xué)生分析問題、解決問題的能力(三)情感目標(biāo)培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí);滲透轉(zhuǎn)化思想;滲透數(shù)學(xué)來源于實(shí)踐又作用于實(shí)踐的觀點(diǎn)二、教學(xué)重點(diǎn)、難點(diǎn)1重點(diǎn):把等腰梯形轉(zhuǎn)化為解直角三角形問題;2難點(diǎn):如何添作適當(dāng)?shù)妮o助線三、教學(xué)過程1出示已準(zhǔn)備的泥燕尾槽,讓學(xué)生有感視印象,將其橫向垂直于燕尾槽的平面切割,得橫截面,請(qǐng)學(xué)生通過觀察,認(rèn)識(shí)到這是一個(gè)等腰梯形,并結(jié)合圖形,向?qū)W生介紹一些專用術(shù)語,使學(xué)生知道,圖中燕尾角對(duì)應(yīng)哪一個(gè)
18、角,外口、內(nèi)口和深度對(duì)應(yīng)哪一條線段這一介紹,使學(xué)生對(duì)本節(jié)課內(nèi)容很感興趣,激發(fā)了學(xué)生的學(xué)習(xí)熱情2例題例燕尾槽的橫斷面是等腰梯形,圖6-26是一燕尾槽的橫斷面,其中燕尾角B是55。,外口寬AD是180mm,燕尾槽的深度是70mm,求它的里口寬BC(精確到1mm).AD圖6-26分析:引導(dǎo)學(xué)生將上述問題轉(zhuǎn)化為數(shù)學(xué)問題;等腰梯形ABCD中,上底AD=180mm,高AE=70mm,ZB=55°,求下底BC.(2)讓學(xué)生展開討論,因?yàn)樯瞎?jié)課通過做等腰三角形的高把其分割為直角三角形,從而利用解直角三角形的知識(shí)來求解學(xué)生對(duì)這一轉(zhuǎn)化有所了解因此,學(xué)生經(jīng)互相討論,完全可以解決這一問題例題小結(jié):遇到有關(guān)等
19、腰梯形的問題,應(yīng)考慮如何添加輔助線,將其轉(zhuǎn)化為直角三角形和矩形的組合圖形,從而把求等腰梯形的下底的問題轉(zhuǎn)化成解直角三角形的問題3鞏固練習(xí)如圖6-27,在離地面高度5米處引拉線固定電線桿,拉線和地面成60。角,求拉線AC的長(zhǎng)以及拉線下端點(diǎn)A與桿底D的距離AD(精確到0.01米).分析:請(qǐng)學(xué)生審題:因?yàn)殡娋€桿與地面應(yīng)是垂直的,那么圖6-27中AACD是直角三角形.其中CD=5m,ZCAD=60。,求AD、AC的長(zhǎng).(2)學(xué)生運(yùn)用已有知識(shí)獨(dú)立解決此題教師巡視之后講評(píng)(三)小結(jié)請(qǐng)學(xué)生作小結(jié),教師補(bǔ)充本節(jié)課教學(xué)內(nèi)容仍是解直角三角形,但問題已是處理一些實(shí)際應(yīng)用題,在這些問題中,有較多的專業(yè)術(shù)語,關(guān)鍵是要分
20、清每一術(shù)語是指哪個(gè)元素,再看是否放在同一直角三角形中,這時(shí)要靈活,必要時(shí)還要作輔助線,再把問題放在直角三角形中解決在用三角函數(shù)時(shí),要正確判斷邊角關(guān)系四、布置作業(yè)1. 如圖6-28,在等腰梯形ABCD中,DCAB,DE丄AB于E,AB=8,DE=4,cosA=,求CD的長(zhǎng).2.教材課本習(xí)題P96第6,7,8題第六課時(shí)解直三角形應(yīng)用(五).教學(xué)三維目標(biāo)(一)知識(shí)目標(biāo)明鞏固直角三角形中銳角的三角函數(shù),學(xué)會(huì)解關(guān)于坡度角和有關(guān)角度的問題.(二)能力目標(biāo)逐步培養(yǎng)學(xué)生分析問題解決問題的能力,進(jìn)一步滲透數(shù)形結(jié)合的數(shù)學(xué)思想和方法.(三)德育目標(biāo)培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí);滲透數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辯證唯物
21、主義觀點(diǎn).二、教學(xué)重點(diǎn)、難點(diǎn)和疑點(diǎn)1.重點(diǎn):能熟練運(yùn)用有關(guān)三角函數(shù)知識(shí).2. 難點(diǎn):解決實(shí)際問題.3. 疑點(diǎn):株距指相鄰兩樹間的水平距離,學(xué)生往往理解為相鄰兩樹間的距離而造成錯(cuò)誤三、教學(xué)過程1.探究活動(dòng)一教師出示投影片,出示例題.例1如圖6-29,在山坡上種樹,要求株距(相鄰兩樹間的水平距離)是5.5m,測(cè)得斜坡的傾斜角是24°,求斜坡上相鄰兩樹的坡面距離是多少(精確到0.1m).分析:1.例題中出現(xiàn)許多術(shù)語株距,傾斜角,這些概念學(xué)生未接觸過,比較生疏,而株距概念又是學(xué)生易記錯(cuò)之處,因此教師最好準(zhǔn)備教具:用木板釘成一斜坡,再在斜坡上釘幾個(gè)鐵釘,利用這種直觀教具更容易說明術(shù)語,符合學(xué)生
22、的思維特點(diǎn).2.引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題畫出圖形(上圖6-29).已知:也ABC中,ZC=90°,AC=5.5,ZA=24。,求AB.3學(xué)生運(yùn)用解直角三角形知識(shí)完全可以獨(dú)立解決例1教師可請(qǐng)一名同學(xué)上黑板做,其余同學(xué)在練習(xí)本上做,教師巡視.直C解;在RtZXABC中,cosA=7A_BAC一2=閱rE5.5答:斜坡上相鄰兩樹間的坡面距離約是6.0米教師引導(dǎo)學(xué)生評(píng)價(jià)黑板上的解題過程,做到全體學(xué)生都掌握2探究活動(dòng)二例2如圖6-30,沿AC方向開山修渠,為了加快施工速度,要從小山的另一邊同時(shí)施工,從AC上的一點(diǎn)B取ZABD=140°,BD=52cm,ZD=50°,
23、那么開挖點(diǎn)E離D多遠(yuǎn)(精確到0.1m),正好能使A、C、E成一條直線?這是實(shí)際施工中經(jīng)常遇到的問題應(yīng)首先引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題由題目的已知條件,ZD=50°,ZABD=140°,BD=520米,求DE為多少時(shí),A、C、E在一條直線上。學(xué)生觀察圖形,不難發(fā)現(xiàn),ZE=90°,這樣此題就轉(zhuǎn)化為解直角三角形的問題了,全班學(xué)生應(yīng)該能獨(dú)立準(zhǔn)確地完成解:要使A、C、E在同一直線上,則ZABD是厶BDE的一個(gè)外角.AZBED=ZABD-ZD=90°.°.DE二BDcosD=520X0.6428=334.256334.3(m).答:開挖點(diǎn)E離D334.
24、3米,正好能使A、C、E成一直線,提到角度問題,初一教材曾提到過方向角,但應(yīng)用較少因此本節(jié)課很有必要補(bǔ)充一道涉及方向角的實(shí)際應(yīng)用問題,出示投影片練習(xí)P95練習(xí)1,2。補(bǔ)充題:正午10點(diǎn)整,一漁輪在小島0的北偏東30。方向,距離等于10海里的A處,正以每小時(shí)10海里的速度向南偏東60°方向航行.那么漁輪到達(dá)小島0的正東方向是什么時(shí)間?(精確到1分)學(xué)生雖然在初一接觸過方向角,但應(yīng)用很少,所以學(xué)生在解決這個(gè)問題時(shí),可能出現(xiàn)不會(huì)畫圖,無法將實(shí)際問題轉(zhuǎn)化為幾何問題的情況因此教師在學(xué)生獨(dú)自嘗試之后應(yīng)加以引導(dǎo):(1)確定小島0點(diǎn);(2)畫出10時(shí)船的位置A;(3)小船在A點(diǎn)向南偏東60。航行,到
25、達(dá)0的正東方向位置在哪?設(shè)為B;(4)結(jié)合圖形引導(dǎo)學(xué)生加以分析,可以解決這一問題.此題的解答過程非常簡(jiǎn)單,對(duì)于程度較好的班級(jí)可以口答,以節(jié)省時(shí)間補(bǔ)充一道有關(guān)方向角的應(yīng)用問題,達(dá)到熟練程度對(duì)于程度一般的班級(jí)可以不必再補(bǔ)充,只需理解前三例即可補(bǔ)充題:如圖6-32,海島A的周圍8海里內(nèi)有暗礁,魚船跟蹤魚群由西向東航行,在點(diǎn)B處測(cè)得海島A位于北偏東60°,航行12海里到達(dá)點(diǎn)C處,又測(cè)得海島A位于北偏東30°,如果魚船不改變航向繼續(xù)向東航行有沒有觸礁的危險(xiǎn)?如果時(shí)間允許,教師可組織學(xué)生探討此題,以加深對(duì)方向角的運(yùn)用同時(shí),學(xué)生對(duì)這種問題也非常感興趣,教師可通過此題創(chuàng)設(shè)良好的課堂氣氛,激
26、發(fā)學(xué)生的學(xué)習(xí)興趣若時(shí)間不夠,此題可作為思考題請(qǐng)學(xué)生課后思考(三)小結(jié)與擴(kuò)展教師請(qǐng)學(xué)生總結(jié):在這類實(shí)際應(yīng)用題中,都是直接或間接地把問題放在直角三角形中,雖然有一些專業(yè)術(shù)語,但要明確各術(shù)語指的什么元素,要善于發(fā)現(xiàn)直角三角形,用三角函數(shù)等知識(shí)解決問題利用解直角三角形的知識(shí)解決實(shí)際問題的一般過程是:(1)將實(shí)際問題抽象為數(shù)學(xué)問題(畫出平面圖形,轉(zhuǎn)化為解直角三角形的問題);(2)根據(jù)條件的特點(diǎn),適當(dāng)選用銳角三角函數(shù)等去解直角三角形;(3)得到數(shù)學(xué)問題的答案;(4)得到實(shí)際問題的答案。四、布置作業(yè)課本習(xí)題P979,10第六課時(shí)解直三角形應(yīng)用一、(一)知識(shí)教學(xué)點(diǎn)鞏固用三角函數(shù)有關(guān)知識(shí)解決問題,學(xué)會(huì)解決坡度問
27、題(二)能力目標(biāo)逐步培養(yǎng)學(xué)生分析問題、解決問題的能力;滲透數(shù)形結(jié)合的數(shù)學(xué)思想和方法(三)德育目標(biāo)培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí),滲透理論聯(lián)系實(shí)際的觀點(diǎn)、教學(xué)重點(diǎn)、難點(diǎn)和疑點(diǎn)1重點(diǎn):解決有關(guān)坡度的實(shí)際問題23.難點(diǎn):疑點(diǎn)、教學(xué)過程個(gè)問題請(qǐng)你解決:如圖6-33例1.理解坡度的有關(guān)術(shù)語對(duì)于坡度i表示成l:m的形式學(xué)生易疏忽,教學(xué)中應(yīng)著重強(qiáng)調(diào),引起學(xué)生的重視.水庫(kù)大壩的橫斷面是梯形,壩頂寬6m,壩高23m,斜坡AB的坡度i=1:3,斜坡CD的坡度i=1:2.5,求斜坡AB的坡面角a,壩底寬AD和斜坡AB的長(zhǎng)(精確到0.1m).同學(xué)們因?yàn)槟惴Q他們?yōu)楣こ處煻湴?滿腔熱情,但一見問題又手足失措,因?yàn)檫B題中的術(shù)語坡度
28、、坡角等他們都不清楚這時(shí),教師應(yīng)根據(jù)學(xué)生想學(xué)的心情,及時(shí)點(diǎn)撥通過前面例題的教學(xué),學(xué)生已基本了解解實(shí)際應(yīng)用題的方法,會(huì)將實(shí)際問題抽象為幾何問題加以解決但此題中提到的坡度與坡角的概念對(duì)學(xué)生來說比較生疏,同時(shí)這兩個(gè)概念在實(shí)際生產(chǎn)、生活中又有十分重要的應(yīng)用,因此本節(jié)課關(guān)鍵是使學(xué)生理解坡度與坡角的意義介紹概念坡度與坡角結(jié)合圖6-34,教師講述坡度概念,并板書:坡面的鉛直高度h和水寫成1:垃的形式,如1=1:%或=.平寬度的比叫做坡度(或叫做坡比),一般用i表示。即i=,把坡面與水平面的夾角a叫做坡角.引導(dǎo)學(xué)生結(jié)合圖形思考,坡度i與坡角a之間具有什么關(guān)系?答:i=tan這一關(guān)系在實(shí)際問題中經(jīng)常用到,教師不
29、妨設(shè)置練習(xí),加以鞏固練習(xí)(1)一段坡面的坡角為60°,則坡度i=;(2)已知一段坡面上,鉛直高度為亦坡面長(zhǎng)為275,則坡度1=,坡角度為了加深對(duì)坡度與坡角的理解,培養(yǎng)學(xué)生空間想象力,教師還可以提問:(1) 坡面鉛直高度一定,其坡角、坡度和坡面水平寬度有什么關(guān)系?舉例說明(2) 坡面水平寬度一定,鉛直高度與坡度有何關(guān)系,舉例說明答:(1)如圖,鉛直高度AB一定,水平寬度BC增加,a將變小,坡度減小,因?yàn)閠an=,AB不變,tan隨BC增大而減小(2)與(1)相反,水平寬度BC不變,a將隨鉛直高度增大而增大,tana也隨之增大,因?yàn)閠an=不變時(shí),tan隨AB的增大而增大2講授新課引導(dǎo)學(xué)生分析例題,圖中ABCD是梯形,若BE丄AD,CF丄AD,梯形就被分割成RtAABE,矩形BEFC和RtACFD,AD=AE+EF+FD,AE、DF可在AABE和厶CDF中通過坡度求出,EF=BC=6m,從而求出AD以上分析最好在學(xué)生充分思考后由學(xué)生完成,以培養(yǎng)學(xué)生邏輯思維能力及良好的學(xué)習(xí)習(xí)慣坡度
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 保潔與員工合同范本
- 住宅加裝電梯工程合同范例
- 出售尼龍水箱合同范本
- 與政府合作合同范本
- 內(nèi)控合同范本
- 協(xié)商撤銷合同范例
- 勞動(dòng)合同范本 病假
- 單位租住房合同范本
- 個(gè)人蓋房合同范本
- 中醫(yī)醫(yī)聯(lián)體合同范本
- PPT用中國(guó)地圖(可編輯)
- 基于德育的農(nóng)村中小學(xué)校園欺凌現(xiàn)象的解決對(duì)策優(yōu)秀獲獎(jiǎng)科研論文
- 鐵路工程概預(yù)算-工程經(jīng)濟(jì)管理培訓(xùn)-課件
- 小學(xué)英語一般現(xiàn)在時(shí)-(演示)課件
- 面部激素依賴性皮炎的管理課件
- 盧卡奇教學(xué)講解課件
- 智慧環(huán)衛(wèi)項(xiàng)目建設(shè)方案
- 焊接作業(yè)現(xiàn)場(chǎng)環(huán)境溫度濕度記錄
- 長(zhǎng)期護(hù)理保險(xiǎn)待遇資格申請(qǐng)表
- 馬克思主義基本原理教案:第一章+教案
- 【腳手架計(jì)算書】 腳手架計(jì)算書詳細(xì)步驟
評(píng)論
0/150
提交評(píng)論