北師大版高中數(shù)學選修1-2階段質(zhì)量檢測(三)推理與證明_第1頁
北師大版高中數(shù)學選修1-2階段質(zhì)量檢測(三)推理與證明_第2頁
北師大版高中數(shù)學選修1-2階段質(zhì)量檢測(三)推理與證明_第3頁
北師大版高中數(shù)學選修1-2階段質(zhì)量檢測(三)推理與證明_第4頁
北師大版高中數(shù)學選修1-2階段質(zhì)量檢測(三)推理與證明_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、階段質(zhì)量檢測(三)推理與證明(時間120分鐘,滿分150分)一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中, 只有一項是符合題目要求的)1 .魯班發(fā)明鋸子的思維過程為:帶齒的草葉能割破行人的腿,“鋸子”能“鋸”開木 材,它們在功能上是類似的.因此,它們在形狀上也應該類似,“鋸子”應該是齒形的.該 過程體現(xiàn)了()A.歸納推理B.類比推理C.沒有推理D.演繹推理答案:B2 .數(shù)列35,9,173,的一個通項公式是()A. a=2nB.斯=2"+1C.斯=2”- 1D. %=2/1答案:B3 .在ZkABC 中,sin Asin C<cos Acos C

2、,則 AABC 一定是()A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形解析:選 C 由 sin Asin C<cosAcos C,可得cos(A+C)>0,即cos5<0,所以5為鈍角.4.下面幾種推理是合情推理的是()由圓的性質(zhì)類比出球的有關性質(zhì);由直角三角形、等腰三角形、等邊三角形內(nèi)角和是180。歸納出所有三角形的內(nèi)角和 都是180°;由菱形的性質(zhì),推出正方形的性質(zhì);三角形內(nèi)角和是180。,四邊形內(nèi)角和是360。,五邊形內(nèi)角和是540。,由此得凸多邊 形內(nèi)角和是(- 2)180。.A. B. ®®C.D.解析:選C 合情推理分為類

3、比推理和歸納推理,是類比推理,是歸納推理, 是演繹推理.5 .用反證法證明:“若整系數(shù)一元二次方程。/+床+c=omwo)有有理數(shù)根,那么叫 dc中至少有一個偶數(shù)”時,下列假設正確的是()A.假設b, c都是偶數(shù)B.假設。,b, c都不是偶數(shù)c.假設 bt c至少有一個偶數(shù)D.假設叫 bf c至多有一個偶數(shù)解析:選B “叫b,c中至少有一個偶數(shù)”的否定應為“明力,c中至多有。個偶數(shù)”, 即“叫 b, c都不是偶數(shù)”.6 .已知/(幻=尸+工,a,8WR,且+。>0,則/(。)+/(力的值一定()A.大于零B.等于零C.小于零D,正負都有可能解析:選A 因f(x)=x3+x是增函數(shù)且是奇函

4、數(shù),由。+力>0, ,.a>bt:,f(a)+f(b)>0.7 .甲、乙、丙、丁四位同學一起去向老師詢問成語競賽的成績.老師說:你們四人中 有2位優(yōu)秀,2位良好,我現(xiàn)在給甲看乙、丙的成績,給乙看丙的成績,給丁看甲的成績.看 后甲對大家說:我還是不知道我的成績.根據(jù)以上信息,貝)A.乙可以知道四人的成績B. 丁可以知道四人的成績C.乙、丁可以知道對方的成績D.乙、丁可以知道自己的成績解析:選D 依題意,四人中有2位優(yōu)秀,2位良好,由于甲知道乙、丙的成績,但還 是不知道自己的成績,則乙、丙必有1住優(yōu)秀,1住良好,甲、丁必有1住優(yōu)秀,1住良好.因 此,乙知道丙的成績后,必然知道自己

5、的成績;丁知道甲的成績后,必然知道自己的成績, 因此選D.8 .命題“對于任意角 9, cos% sin% = cos 26”的證明 wcos4 sin4 = (cos2 sin2)(cos2+sin2)=cos2sin2=cos 10n 過程應用 了()A.分析法B.綜合法C.綜合法、分析法綜合使用D.間接證明法解析:選B 從證明的過程來看,符合綜合法的證明特點.9 .觀察下列各等式:,21+ 6 =2, . - 4+* - 4=2, 7 7 J11 4=2, J"/十-z24 6434 3474 14104 24=2,依照以上各式成立的規(guī)律,得到一般性的等式為()fl 8/IA/

6、r=4+(8-n)-4=r + 1 ( + D+5( + 1)4 +( + l)4一fl4 (/i+4)4n + 1h+5D,(/ + 1)-4+(h+5)-4=解析:選A 觀察分子中2+6=5+3=7+1 = 10+(2)=8.10 .用減函數(shù)的定義證明函數(shù)/(刈=一工3在R上是減函數(shù)的小前提可以是()A.減函數(shù)的定義B.對R上的任意X1WX2,都有/(X1)壬/次2)C.對R上的任意X1<T2,都有/(Xl)</(X2)D.對R上的任意也。2,都有/(xDRm)解析:選D 小前提可以是“對R上的任意X1<X2,都有/(X1)X2)”或“對R上的任 意不>外,都有於1

7、)的2)”11 .下列四類函數(shù)中,具有性質(zhì)“對任意的x>0, )>o,函數(shù)/(X)滿足(X)F=/(XJ)”的 是()A.指數(shù)函數(shù)B.對數(shù)函數(shù)C. 一次函數(shù)D.余弦函數(shù)解析:選A 當函數(shù)次幻=M。>0, g#i)時,對任意的x>o, j>o,有次x)p=(/ =f(xy)r即指數(shù)函數(shù)次刈=爐(。>0, g#1)滿足f(x)F=/(盯),可以檢驗,B, C, D選項均不 滿足要求.12 .六個面都是平行四邊形的四棱柱稱為平行六面體.如圖甲,在平行四邊形ABCD 中,有4。+3。2=2(4即+4。2),那么在圖乙中所示的平行六面體ABCD/iBCNi中,4口 +

8、8歷+CA,+。明等于( )A. 2(AB2+AD2+AAi)B. 3(AB2+AD2+AAl)C. 4(AB2+AD2+AA?)D. 4(AB2+AD2)解析:選 C ACl+BDi-VCAl+DBl=(Aq+GH)+(3 0+O 陰)=2(AAi+AC2)+2(BBl+BD2)=AAA+2(AC1+BD2)=4AAi+4AB2+4AD2.二、填空題(本大題共4小題,每小題5分,共20分,請把正確的答案填在題中的橫線 上)13 .用三段論證明/(x)=x3+xcosx為奇函數(shù)的大前提是.答案:若=/(工)滿足/(X)=一人*),則y=/(x)為奇函數(shù)14 .用反證法證明命題“若。,力是實數(shù),

9、且歷- 11=0,則0=力=1”時,應作 的假設是解析:結論“。=力=1"的含義是G=1且8=1,故其否定應為“。工1或8r1” .答案:假設。工1或力W115 .在平面上,若兩個正三角形的邊長比為1 : 2,則它們的面積比為1 : 4.類似地,在 空間中,若兩個正四面體的枝長比為1 : 2,則它們的體積比為.解析:類比“面積比等于邊長比的平方”可得正四面體的體積比等于橫長比的立方, 即 1 : 8.答案:1 : 816 .如圖,在等腰直角三角形43c中,斜邊8c=26.過點A作3c的垂線,垂足為 Ai ;過點Ai作AC的垂線,垂足為42;過點A2作AC的垂線,垂足為/h ;,依此

10、類推.設 A4=i , AAi=a2 ,4也=。3 ,,4546=«7 ,則 “7=.解析:法一:直接遞推歸納:等腰直角三角形A3C中,斜邊BC=2小,所以A3=AC="1=2, AAi=ai=y2, AiA2=«3=1,,AsA6=ai=aiX法二:求通項:等腰直角三角形A5C中,斜邊8c=26,所以A3=AC=0i=2, AAi44江,A;1TA=%+i=sin了%=1半%=2X_1 =丁答案:j三、解答題(本大題共6小題,共70分.解答應寫出必要的文字說明、證明過程或演算 步驟)17 .(本小題滿分10分)已知等差數(shù)列“的公差為d,前項和為S”,詼有如下性質(zhì)

11、: (?,p, q£N+)通項的=%,+(一旭必若 m+=p+q,則。盟+。=即+%;若旭+=20,則 aln+an=2ap;S“,S2nS", S加一S2”構成等差數(shù)列.類比上述性質(zhì),在等比數(shù)列5中,寫出相類似的性質(zhì).解:在等比數(shù)列瓦中,公比為42*0),前項和為SJ , 0有如下性質(zhì):"* n9P, «£N+)通項b產(chǎn)bwD若/w+=p+q,則 bwbn=bpbq;若加+=20,則瓦|也=毋;SJ , SV -SJ , S3-Sin1 (S 1 WO)構成等比數(shù)列.18 .(本小題滿分12分)設數(shù)列的的前項和為S,且滿足服=2S“(

12、3;N+).求即,。3,。4的值并寫出其通項公式;根據(jù)的結論用三段論證明數(shù)列斯是等比數(shù)列.解:由斯= 2-S”,得 01 = 1; 02=3;。3=; «4=|,猜想所=G>-|(WN+).(2)對于數(shù)列,若等 =p, p是非零常數(shù),則所是等比數(shù)列,大前提t(yī)tn因為數(shù)列m的通項公式?!?&r,且誓M,卜前提所以通項公式為的數(shù)列為是等比數(shù)列.結論19 .(本小題滿分12分)如圖,在四面體A3CD中,CB=CD, AD1BD9 E,尸分別是ABf 3。的中點.求證:(1)直線E尸平面ACO;(2)平面EFCJL平面BCD.證明:(1)因為£,尸分別是A5, 80的

13、中點,所以E尸是ZkABO的中位線,所以E尸A。,又屈F平面AC。,AD 平面AC0,所以直線EF平面ACD.(2)因為 AD«L3。,EF/AD,所以 EFLBD,因為CB=CD, F是BD的中點、,所以CFJL3。,又E產(chǎn)nCF=尸,所以BD工平面EFC.因為BD平面5CO,所以平面EFC,平面BCD.20 .(本小題滿分12分)已知/MBC的三邊,b, c的倒數(shù)成等差數(shù)列,試分別用綜合 法和分析法證明8為銳角.證明:法一(分析法):要證明8為銳角,因為8為三角形的內(nèi)角,則只需證cos8>0.n a2-c2b2又c°s8= 一說一,工只需證明。2+。2一爐>

14、0.,即證。2 +。2爐.9a2c22ac, 只需證明 2nc爐.即 2«c=%(g+c),只需證明"。+0爐,即證+c成立,在ABC中,最后一個不等式顯然成立.2 一力b(a+c)=2aob2( a+ob).C J v02+c2一爐 2acb2;c°sB= / »方亡°,又丁 =。0§1在(0, 7T)上單調(diào)遞減,A0Bj,即3為銳角.21 .(本小題滿分12分)在同一平面內(nèi),若P, A, 8三點共線,則對于平面上任意一點。,有OP =入OA 0B 且)+=1.對這個命題證明如下:證明:因為P, A, 3三點共線,所以萬="

15、;萬,即/一07=m(/一位),整理得夢=(1m) OA +w/ OB ,因為(1次)+旭=1,所以2+=L請把上述結論和證明過程類比到空間向量.解:類比到空間向量所得結論為:在空間中,若尸,A, B, C四點共面,則對于空間 中任意一點O,有蘇 =x/+j而+z/,且x+y+z=l.對這個命題證明如下:證明:因為P, A, B, C四點共面,所以AP =a AB +/ AC ,即8一3=2( OB /)+(左一畝),整理得蘇 =(1 一幺一)/+幺而+左,因為(1 -2)+上+ =1,所以x+z=L22 .(本小題滿分12分)某同學在一次研究性學習中發(fā)現(xiàn),以下五個式子的值都等于同 一個常數(shù):

16、® sin213°+cos217°sin 13°cos 17°; sin215c+cos2i50sin 150cos 15°; sin218c+cos2i2。一sin 18°cos 12°;sin2(-18o)+cosW-sin(-18°)cos480;sin2(25°)+cos255°sin(25°)cos 55°.(1)試從上述五個式子中選擇一個,求出這個常數(shù);(2)根據(jù)的計算結果,將該同學的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結論.解:(1)選擇式,計算如下:sW

17、150+cos215fin 15os 15<>=l-fsiii 300=l-=1法一:三角恒等式為 sin2a+cos2(30°a)sin acos(30°-a)=. 4證明如下:sin2a+cos2( 30°«)-sin «cos(30°a)=sin2«+(cos 30°cos a+sin 300sin «)2sin a-(cos 30° cos a+sin 30°sin a)=sin2a4-cos2a+sin acos a+/ii?a一半sin a-cos a|sin2a="in2a+;cos2a=法二

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論