高中物理競賽講義-第三講 習題課_第1頁
高中物理競賽講義-第三講 習題課_第2頁
高中物理競賽講義-第三講 習題課_第3頁
高中物理競賽講義-第三講 習題課_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、第三講 習題課1、如圖7所示,在固定的、傾角為斜面上,有一塊可以轉(zhuǎn)動的夾板(不定),夾板和斜面夾著一個質(zhì)量為m的光滑均質(zhì)球體,試求:取何值時,夾板對球的彈力最小。解說:法一,平行四邊形動態(tài)處理。對球體進行受力分析,然后對平行四邊形中的矢量G和N1進行平移,使它們構成一個三角形,如圖8的左圖和中圖所示。由于G的大小和方向均不變,而N1的方向不可變,當增大導致N2的方向改變時,N2的變化和N1的方向變化如圖8的右圖所示。顯然,隨著增大,N1單調(diào)減小,而N2的大小先減小后增大,當N2垂直N1時,N2取極小值,且N2min = Gsin。法二,函數(shù)法??磮D8的中間圖,對這個三角形用正弦定理,有: =

2、,即:N2 = ,在0到180°之間取值,N2的極值討論是很容易的。答案:當= 90°時,甲板的彈力最小。2、把一個重為G的物體用一個水平推力F壓在豎直的足夠高的墻壁上,F(xiàn)隨時間t的變化規(guī)律如圖9所示,則在t = 0開始物體所受的摩擦力f的變化圖線是圖10中的哪一個?解說:靜力學旨在解決靜態(tài)問題和準靜態(tài)過程的問題,但本題是一個例外。物體在豎直方向的運動先加速后減速,平衡方程不再適用。如何避開牛頓第二定律,是本題授課時的難點。靜力學的知識,本題在于區(qū)分兩種摩擦的不同判據(jù)。水平方向合力為零,得:支持力N持續(xù)增大。物體在運動時,滑動摩擦力f = N ,必持續(xù)增大。但物體在靜止后靜

3、摩擦力f G ,與N沒有關系。對運動過程加以分析,物體必有加速和減速兩個過程。據(jù)物理常識,加速時,f G ,而在減速時f G 。答案:B 。3、如圖11所示,一個重量為G的小球套在豎直放置的、半徑為R的光滑大環(huán)上,另一輕質(zhì)彈簧的勁度系數(shù)為k ,自由長度為L(L2R),一端固定在大圓環(huán)的頂點A ,另一端與小球相連。環(huán)靜止平衡時位于大環(huán)上的B點。試求彈簧與豎直方向的夾角。解說:平行四邊形的三個矢量總是可以平移到一個三角形中去討論,解三角形的典型思路有三種:分割成直角三角形(或本來就是直角三角形);利用正、余弦定理;利用力學矢量三角形和某空間位置三角形相似。本題旨在貫徹第三種思路。分析小球受力矢量平

4、移,如圖12所示,其中F表示彈簧彈力,N表示大環(huán)的支持力。(學生活動)思考:支持力N可不可以沿圖12中的反方向?(正交分解看水平方向平衡不可以。)容易判斷,圖中的灰色矢量三角形和空間位置三角形AOB是相似的,所以: 由胡克定律:F = k(- R) 幾何關系:= 2Rcos 解以上三式即可。答案:arccos 。(學生活動)思考:若將彈簧換成勁度系數(shù)k較大的彈簧,其它條件不變,則彈簧彈力怎么變?環(huán)的支持力怎么變?答:變??;不變。(學生活動)反饋練習:光滑半球固定在水平面上,球心O的正上方有一定滑輪,一根輕繩跨過滑輪將一小球從圖13所示的A位置開始緩慢拉至B位置。試判斷:在此過程中,繩子的拉力T

5、和球面支持力N怎樣變化?解:和上題完全相同。答:T變小,N不變。4、如圖14所示,一個半徑為R的非均質(zhì)圓球,其重心不在球心O點,先將它置于水平地面上,平衡時球面上的A點和地面接觸;再將它置于傾角為30°的粗糙斜面上,平衡時球面上的B點與斜面接觸,已知A到B的圓心角也為30°。試求球體的重心C到球心O的距離。解說:練習三力共點的應用。根據(jù)在平面上的平衡,可知重心C在OA連線上。根據(jù)在斜面上的平衡,支持力、重力和靜摩擦力共點,可以畫出重心的具體位置。幾何計算比較簡單。答案:R 。(學生活動)反饋練習:靜摩擦足夠,將長為a 、厚為b的磚塊碼在傾角為的斜面上,最多能碼多少塊?解:三

6、力共點知識應用。答: 。4、兩根等長的細線,一端拴在同一懸點O上,另一端各系一個小球,兩球的質(zhì)量分別為m1和m2 ,已知兩球間存在大小相等、方向相反的斥力而使兩線張開一定角度,分別為45和30°,如圖15所示。則m1 : m2為多少?解說:本題考查正弦定理、或力矩平衡解靜力學問題。對兩球進行受力分析,并進行矢量平移,如圖16所示。首先注意,圖16中的灰色三角形是等腰三角形,兩底角相等,設為。而且,兩球相互作用的斥力方向相反,大小相等,可用同一字母表示,設為F 。對左邊的矢量三角形用正弦定理,有: = 同理,對右邊的矢量三角形,有: = 解兩式即可。答案:1 : 。(學生活動)思考:解

7、本題是否還有其它的方法?答:有將模型看成用輕桿連成的兩小球,而將O點看成轉(zhuǎn)軸,兩球的重力對O的力矩必然是平衡的。這種方法更直接、簡便。應用:若原題中繩長不等,而是l1 :l2 = 3 :2 ,其它條件不變,m1與m2的比值又將是多少?解:此時用共點力平衡更加復雜(多一個正弦定理方程),而用力矩平衡則幾乎和“思考”完全相同。答:2 :3 。5、如圖17所示,一個半徑為R的均質(zhì)金屬球上固定著一根長為L的輕質(zhì)細桿,細桿的左端用鉸鏈與墻壁相連,球下邊墊上一塊木板后,細桿恰好水平,而木板下面是光滑的水平面。由于金屬球和木板之間有摩擦(已知摩擦因素為),所以要將木板從球下面向右抽出時,至少需要大小為F的水平拉力。試問:現(xiàn)要將木板繼續(xù)向左插進一些,至少需要多大的水平推力?解說:這是一個典型的力矩平衡的例題。以球和桿為對象,研究其對轉(zhuǎn)軸O的轉(zhuǎn)動平衡,設木板拉出時給球體的摩擦力為f ,支持力

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論