![函數(shù)的定義域與求法講解_第1頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-6/8/0496f983-7559-4db6-a33e-5d007480760d/0496f983-7559-4db6-a33e-5d007480760d1.gif)
![函數(shù)的定義域與求法講解_第2頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-6/8/0496f983-7559-4db6-a33e-5d007480760d/0496f983-7559-4db6-a33e-5d007480760d2.gif)
![函數(shù)的定義域與求法講解_第3頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-6/8/0496f983-7559-4db6-a33e-5d007480760d/0496f983-7559-4db6-a33e-5d007480760d3.gif)
![函數(shù)的定義域與求法講解_第4頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-6/8/0496f983-7559-4db6-a33e-5d007480760d/0496f983-7559-4db6-a33e-5d007480760d4.gif)
![函數(shù)的定義域與求法講解_第5頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-6/8/0496f983-7559-4db6-a33e-5d007480760d/0496f983-7559-4db6-a33e-5d007480760d5.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、一、 函數(shù)的定義域與求法例題:1、 求下列函數(shù)的定義域3、已知函數(shù)y=lg(mx2-4mx+m+3)的定義域?yàn)镽,數(shù)m的取值圍解析:利用復(fù)合函數(shù)的定義域進(jìn)行分類討論 當(dāng)m=0時(shí),則mx2-4mx+m+3=3, 原函數(shù)的定義域?yàn)镽; 當(dāng)m0時(shí),則 mx2-4mx+m+30, m0時(shí),顯然原函數(shù)定義域不為R; m0,且(-4m)2-4m(
2、m+3)<0 時(shí),即m,原函數(shù)定義域?yàn)镽, 所以當(dāng)m0,1) 時(shí),原函數(shù)定義域?yàn)镽4、求函數(shù)y=log2x + 1 (x4) 的反函數(shù)的定義域解析:求原函數(shù)的值域 由題意可知,即求原函數(shù)的值域, x4, log2x2 y3 所以函數(shù)y=log2x + 1 (x4) 的反函數(shù)的定義域是3,+)5、 函數(shù)f(2x)的定義域是-1,1,求f(log2x)的定義域解析:由題意可知2
3、-12x21 f(x)定義域?yàn)?/2,2 1/2log2x2 2x4所以f(log2x)的定義域是2,4二、 函數(shù)的值域與求法:配方法;零點(diǎn)討論法;函數(shù)圖象法;利用求反函數(shù)的定義域法;換元法;利用函數(shù)的單調(diào)性和有界性法;分離變量法例題:求下列函數(shù)的值域 解析:1、利用求反函數(shù)的定義域求值域先求其反函數(shù):f-1(x)=(3x+1)/(x-2) ,其中x2, 由其反函數(shù)的
4、定義域,可得原函數(shù)的值域是yyR|y2 2、利用反比例函數(shù)的值域不等于0由題意可得, 因此,原函數(shù)的值域?yàn)?/2,+) 4、利用分離變量法和換元法設(shè)法2xt,其中t0,則原函數(shù)可化為y=(t+1)/(t-1) t=(y+1)/(y-1) y>1或y<-1 5、利用零點(diǎn)討論法 由題意可知函數(shù)有3個(gè)零點(diǎn)-3,1,2, 當(dāng)x<-3 時(shí),y=-(x-1)-(x+3)-(x-2)=-3x y&g
5、t;9 當(dāng)-3x<1 時(shí),y=-(x-1)+(x+3)-(x-2)=-x+6 5<y9 當(dāng)1x<2 時(shí),y=(x-1)+(x+3)-(x-2)=x+4 5y<6 當(dāng)x 2時(shí),y=(x-1)+(x+3)+(x-2)=3x y6
6、0; 綜合前面四種情況可得,原函數(shù)的值域是5,+) 6、利用函數(shù)的有界性三、 函數(shù)的單調(diào)性與應(yīng)用例題:2、設(shè)a0且a1,試求函數(shù)y=loga(4+3x-x2)的單調(diào)遞增區(qū)間解析:利用復(fù)合函數(shù)的單調(diào)性的判定 由題意可得原函數(shù)的定義域是(,), 設(shè)u=4+3x-x2 ,其對(duì)稱軸是 x=3/2 , 所以函數(shù)u=4+3x-x2 ,在區(qū)間(,3/2 上單調(diào)遞增;在區(qū)間3/2 ,4)上單調(diào)遞減 a時(shí),y=logau 在其定義域?yàn)樵?/p>
7、函數(shù),由 xuy ,得函數(shù)u=4+3x-x2 的單調(diào)遞增區(qū)間(,3/2 ,即為函數(shù)y=loga(4+3x-x2) 的單調(diào)遞增區(qū)間 a時(shí),y=logau 在其定義域?yàn)闇p函數(shù),由 xuy ,得函數(shù)u=4+3x-x2 的單調(diào)遞減區(qū)間3/2 ,4),即為函數(shù)y=loga(4+3x-x2)的單調(diào)遞增區(qū)間3、已知y=loga(2-ax) 在0,1上是x 的減函數(shù),求a的取值圍。解析:利用復(fù)合函數(shù)的單調(diào)性的判定 由題意可知,a設(shè)ug(x)=2ax,則g(x)在,上是減函數(shù),且x=時(shí),g(x)有最小值umin=2-a 又因?yàn)閡g(x)2ax
8、,所以, 只要 umin=2-a則可,得a又y=loga(2-ax) 在0,1上是x 減函數(shù),ug(x)在,上是減函數(shù),即xuy ,所以y=logau是增函數(shù),故a綜上所述,得a2、已知f(x)的定義域?yàn)椋ǎ?,且在其上為增函?shù),滿足f(xy)=f(x)+f(y),f(2)=1 ,試解不等式f(x)+f(x-2)<3 解析:此題的關(guān)鍵是求函數(shù)值所對(duì)應(yīng)的自變量的值 由題意可得,f(4)=f(2)+f(2)=2 ,3=2+1=f(4)+f(2)=f(4×2)=f(8) 又f(x)+f(x-2)=f(x2-2x) 所以原不等式可化成f(x2-2x)<f(8) 所以原不等式的解集
9、為x|2<x<4四、函數(shù)的奇偶性與應(yīng)用例題:解析:利用作和差判斷由題意可知,函數(shù)的定義域是R,設(shè)x為R任意實(shí)數(shù), 即,f(x) = -f(x) ,原函數(shù)是奇函數(shù)利用作商法判斷 由題意可知,函數(shù)的定義域是R,設(shè)x為R任意實(shí)數(shù),()f(x) 的圖象關(guān)于直線x=1對(duì)稱, f1-(1-x)f1+(1-x) ,xR ,即f(x) f(2-x) , 又 f(x)在R上為偶函數(shù), f(-x)f(x)f(2-x)f(2+x) f(x)是周期的
10、函數(shù),且2是它的一個(gè)周期五、 函數(shù)的周期性與應(yīng)用例題:1、 求函數(shù) y = |sinx|+|cosx|的最小正周期解析:利用周期函數(shù)的定義 y = |sinx|+|cosx|=|-sinx|+|cosx| =|cos(x + /2)|+|sin(x + /2)| 即對(duì)于定義域的每一個(gè)x,當(dāng)x增加到(x + /2)時(shí),函數(shù)值重復(fù)出現(xiàn),因此函數(shù)的最小正周期是/2 3、 求函數(shù)y=sin3x+tan(2x/5) 的最小正周期解析:最小公倍數(shù)法和公式法, (設(shè)f(x)、g(x) 是定義在公共集合上的兩上三角周期函數(shù),T1、T2分別是它們的周期,且T1T2,則f(x)± g(x) 的最小正周期等于T1、T2的最小公倍數(shù))(注:分?jǐn)?shù)的最小公倍數(shù) = 分子的最小公倍數(shù)/分母的最大公約數(shù))由題意可知,sin3x的周期是T1= 2/3,tan(2x/5)的周期是T2=5/2,原函數(shù)的周期是T=10/1 =10 4、 求函數(shù)y=|tanx|的最小正周期解析:利用函數(shù)的圖象求函數(shù)的周期 函數(shù)y=|tanx|的簡(jiǎn)圖如
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州2025年貴州省衛(wèi)生健康委員會(huì)部分直屬事業(yè)單位招聘141人筆試歷年參考題庫(kù)附帶答案詳解
- 荊州2025年湖北荊州市市直事業(yè)單位人才引進(jìn)388人筆試歷年參考題庫(kù)附帶答案詳解
- 河南河南省實(shí)驗(yàn)幼兒園面向教育部直屬師范大學(xué)2025屆公費(fèi)師范畢業(yè)生招聘筆試歷年參考題庫(kù)附帶答案詳解
- 2025年中國(guó)固體亞氯酸鈉市場(chǎng)調(diào)查研究報(bào)告
- 2025至2031年中國(guó)陶瓷型自動(dòng)鞋套機(jī)行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年脫扣器自動(dòng)拍打清洗機(jī)項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國(guó)組合音響揚(yáng)聲器行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年玻璃濾片包裝回收箱項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國(guó)機(jī)車塑膠配件行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年手機(jī)沙發(fā)項(xiàng)目可行性研究報(bào)告
- 中國(guó)心理衛(wèi)生協(xié)會(huì)家庭教育指導(dǎo)師參考試題庫(kù)及答案
- 智能廣告投放技術(shù)方案
- 知識(shí)產(chǎn)權(quán)保護(hù)執(zhí)法
- 高質(zhì)量社區(qū)建設(shè)的路徑與探索
- 數(shù)字化時(shí)代的酒店員工培訓(xùn):技能升級(jí)
- 足球守門員撲救技巧:撲救結(jié)合守護(hù)球門安全
- 《學(xué)術(shù)規(guī)范和論文寫(xiě)作》課件全套 第1-10章 知:認(rèn)識(shí)研究與論文寫(xiě)作 - 引文規(guī)范
- 起重機(jī)更換卷筒施工方案
- 01智慧物流信息技術(shù)概述
- 精神發(fā)育遲滯的護(hù)理查房
- 茶多糖和茶多酚的降血糖作用研究
評(píng)論
0/150
提交評(píng)論