




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、1第十四章第十四章 電流和磁場電流和磁場2 前三章介紹了前三章介紹了靜止電荷間相互作用的規(guī)律靜止電荷間相互作用的規(guī)律,引入了電場概念,并用靜止電荷受的力定義了引入了電場概念,并用靜止電荷受的力定義了電場強(qiáng)度電場強(qiáng)度。 本章將討論本章將討論運(yùn)動(dòng)電荷間相互作用的規(guī)律運(yùn)動(dòng)電荷間相互作用的規(guī)律。首。首先介紹先介紹電流電流的概念及相關(guān)物理圖像;然后介紹的概念及相關(guān)物理圖像;然后介紹運(yùn)動(dòng)電荷或電流之間的相互作用力運(yùn)動(dòng)電荷或電流之間的相互作用力-磁力磁力;磁力;磁力是通過磁場發(fā)生的,因此進(jìn)一步介紹是通過磁場發(fā)生的,因此進(jìn)一步介紹磁場磁場的相的相關(guān)圖像和基本規(guī)律;進(jìn)而介紹關(guān)圖像和基本規(guī)律;進(jìn)而介紹磁場對(duì)電流的
2、作磁場對(duì)電流的作用力規(guī)律用力規(guī)律。3內(nèi)內(nèi) 容容14.1 電流和電流密度電流和電流密度14.3 穩(wěn)恒(恒定)電流穩(wěn)恒(恒定)電流14.2 歐姆定律的微分形式歐姆定律的微分形式14.4 磁場力和磁感應(yīng)強(qiáng)度磁場力和磁感應(yīng)強(qiáng)度14.5 畢奧薩伐爾定律畢奧薩伐爾定律14.6 安培環(huán)路定理安培環(huán)路定理4 14-1 電流和電流密度電流和電流密度 一、電流一、電流1. 電流的形成電流的形成 電流的形成是由于電荷的定向移動(dòng)造成的電流的形成是由于電荷的定向移動(dòng)造成的。要想維持電荷的定向移動(dòng)需要兩個(gè)條件。要想維持電荷的定向移動(dòng)需要兩個(gè)條件。(1)體系內(nèi)必須存在大量能自由運(yùn)動(dòng)的電荷)體系內(nèi)必須存在大量能自由運(yùn)動(dòng)的電荷
3、 載流子(內(nèi)因)載流子(內(nèi)因)(2)必須有維持電荷作定向移動(dòng)的電場(外因)必須有維持電荷作定向移動(dòng)的電場(外因)金屬導(dǎo)體:金屬導(dǎo)體: 自由電子自由電子電解質(zhì)溶液:正、負(fù)離子電解質(zhì)溶液:正、負(fù)離子導(dǎo)電氣體導(dǎo)電氣體 : 正、負(fù)離子和自由電子正、負(fù)離子和自由電子5 注意注意:(2)一般認(rèn)為,正電荷定向運(yùn)動(dòng)引起的電流與等)一般認(rèn)為,正電荷定向運(yùn)動(dòng)引起的電流與等量負(fù)電荷沿反方向運(yùn)動(dòng)引起的電流是等效的,習(xí)量負(fù)電荷沿反方向運(yùn)動(dòng)引起的電流是等效的,習(xí)慣上慣上規(guī)定正電荷運(yùn)動(dòng)的方向?yàn)殡娏鞯姆较蛞?guī)定正電荷運(yùn)動(dòng)的方向?yàn)殡娏鞯姆较?,并把,并把?fù)電荷的反向運(yùn)動(dòng)等效為正電荷的運(yùn)動(dòng)。負(fù)電荷的反向運(yùn)動(dòng)等效為正電荷的運(yùn)動(dòng)。(1)
4、靜電場不能在導(dǎo)體中維持電流,因?yàn)殡S著)靜電場不能在導(dǎo)體中維持電流,因?yàn)殡S著電荷的定向移動(dòng),導(dǎo)體達(dá)到靜電平衡。因此維持電荷的定向移動(dòng),導(dǎo)體達(dá)到靜電平衡。因此維持電流的場必須為電流的場必須為非靜電場非靜電場。62. 電流強(qiáng)度電流強(qiáng)度I (electric current) 單位時(shí)間內(nèi)通過導(dǎo)體任意截面的電荷量單位時(shí)間內(nèi)通過導(dǎo)體任意截面的電荷量 電流強(qiáng)度電流強(qiáng)度IQtdd 電流強(qiáng)度是標(biāo)量,有正、負(fù)之分,是代數(shù)量。所謂電電流強(qiáng)度是標(biāo)量,有正、負(fù)之分,是代數(shù)量。所謂電流強(qiáng)度的正、負(fù),是指電流的流向有正、反兩個(gè)方問。流強(qiáng)度的正、負(fù),是指電流的流向有正、反兩個(gè)方問。電電流的方向性與矢量的方向性是有根本區(qū)別的。
5、流的方向性與矢量的方向性是有根本區(qū)別的。電流是對(duì)一電流是對(duì)一個(gè)曲面而言的,只有兩個(gè)方向,即意味著電荷要么從曲面?zhèn)€曲面而言的,只有兩個(gè)方向,即意味著電荷要么從曲面的這一側(cè)流向那一側(cè),要么從那一側(cè)流向這一側(cè),只有這的這一側(cè)流向那一側(cè),要么從那一側(cè)流向這一側(cè),只有這兩種可能性;而矢量是對(duì)一個(gè)點(diǎn)而言的,因而有無限多個(gè)兩種可能性;而矢量是對(duì)一個(gè)點(diǎn)而言的,因而有無限多個(gè)可能的方向??赡艿姆较?。 習(xí)慣上把正載流子的流動(dòng)方向代表電流強(qiáng)度的方向。習(xí)慣上把正載流子的流動(dòng)方向代表電流強(qiáng)度的方向。7A10mA10A163I 單位單位A (安培安培),常用毫安,常用毫安(mA)、微安、微安( A) 二、二、 電流密度電
6、流密度1、引入、引入 電流強(qiáng)度電流強(qiáng)度雖然能夠描述電流的強(qiáng)弱,但只能反雖然能夠描述電流的強(qiáng)弱,但只能反映通過導(dǎo)體截面的整體電流的特征,而不能描述映通過導(dǎo)體截面的整體電流的特征,而不能描述導(dǎo)體中每一點(diǎn)的電流情況。導(dǎo)體中每一點(diǎn)的電流情況。 為了細(xì)致地描述導(dǎo)體內(nèi)部各點(diǎn)的電流分布情況,為了細(xì)致地描述導(dǎo)體內(nèi)部各點(diǎn)的電流分布情況,我們引入一個(gè)新的物理量我們引入一個(gè)新的物理量電流密度矢量。電流密度矢量。8nSIjddcosddddSISIjSIjddcosId dSd dSd d nn 導(dǎo)體中任意一點(diǎn)的電流密度矢量的導(dǎo)體中任意一點(diǎn)的電流密度矢量的大小大小等于通等于通過該點(diǎn)并垂直于電流的單位截面的電流強(qiáng)度過該
7、點(diǎn)并垂直于電流的單位截面的電流強(qiáng)度,方,方向與正載流子在該點(diǎn)的流動(dòng)方向相同。向與正載流子在該點(diǎn)的流動(dòng)方向相同。 2、 電流密度矢量電流密度矢量jdcosdj SIddIjS 寫成通式:寫成通式:ddIjS 9 由電流密度的定義知,通過導(dǎo)體中任一曲面由電流密度的定義知,通過導(dǎo)體中任一曲面S的電的電流流I為:為:SSjId與電通量定義式相比較,與電通量定義式相比較,I 與與 j 的關(guān)系也是一個(gè)通量與的關(guān)系也是一個(gè)通量與其矢量場的關(guān)系。其矢量場的關(guān)系。 SSEde 通過任一面元單位面積的電流強(qiáng)度等于該處電流通過任一面元單位面積的電流強(qiáng)度等于該處電流密度矢量沿該面元法向的分量。密度矢量沿該面元法向的分
8、量。 電流密度的單位是電流密度的單位是A m-2 ddIjS 10 在有電流的導(dǎo)體中,每一點(diǎn)都具有一定大小和方在有電流的導(dǎo)體中,每一點(diǎn)都具有一定大小和方向的電流密度矢量,構(gòu)成了矢量場,稱為向的電流密度矢量,構(gòu)成了矢量場,稱為電流場電流場。 引入引入電流線電流線形象描述電流場中電流的分布,規(guī)定形象描述電流場中電流的分布,規(guī)定: (1)曲線上每點(diǎn)的切線方向都與該點(diǎn)的電流密度矢)曲線上每點(diǎn)的切線方向都與該點(diǎn)的電流密度矢量的方向相同;量的方向相同;(2)電流線的密度等于)電流線的密度等于J.11121314討論:討論: 該式說明:電阻該式說明:電阻R與其長度與其長度l成正比,與其橫截面成正比,與其橫截
9、面積積S成反比。成反比。 (1)1;1lsR時(shí), 導(dǎo)體材料的電阻率是單位長度單位導(dǎo)體材料的電阻率是單位長度單位橫橫截面積材截面積材料的電阻料的電阻.(2)當(dāng)導(dǎo)體)當(dāng)導(dǎo)體橫橫截面積或電阻率不均勻時(shí),導(dǎo)體的電截面積或電阻率不均勻時(shí),導(dǎo)體的電阻用積分表示阻用積分表示ldlRs15例例1:一塊扇形碳制電極厚為一塊扇形碳制電極厚為t,電流從半徑為,電流從半徑為r1的端的端面面S1流向半徑為流向半徑為r2 的端面的端面S2 ,扇形張角為,扇形張角為 , 求:求:S1和和S2之間的電阻。之間的電阻。rtrSlRddd21drrrtrR12lnrrtRr1r2 tS1S2解解:1617通過該閉合曲面的電流強(qiáng)度
10、通過該閉合曲面的電流強(qiáng)度I一、電流的連續(xù)性方程一、電流的連續(xù)性方程14.3 穩(wěn)恒(恒定)電流穩(wěn)恒(恒定)電流18電流連續(xù)性方程的積分形式電流連續(xù)性方程的積分形式 tqSjSddd該式是電荷守恒定律在電流問題中的表現(xiàn)。該式是電荷守恒定律在電流問題中的表現(xiàn)。 該式表明,電流線終止或發(fā)出于電荷發(fā)生變化的該式表明,電流線終止或發(fā)出于電荷發(fā)生變化的地方,地方,其含義為:如果閉合面其含義為:如果閉合面S內(nèi)正電荷積累起來,內(nèi)正電荷積累起來,則流入則流入S面的電流線多于流出的電流線,所多余的面的電流線多于流出的電流線,所多余的電流線終止于正電荷積累的地方。電流線終止于正電荷積累的地方。1920物理意義:物理意
11、義:電流線連續(xù)地穿過閉合曲面所包圍的體電流線連續(xù)地穿過閉合曲面所包圍的體積,因此穩(wěn)恒電流的電流線不可能在任何地方中斷,積,因此穩(wěn)恒電流的電流線不可能在任何地方中斷,它們永遠(yuǎn)是它們永遠(yuǎn)是閉合曲線閉合曲線。21222324補(bǔ)充補(bǔ)充電動(dòng)勢電動(dòng)勢1. 電源的作用電源的作用+ 要想維持電路有穩(wěn)恒電流。在放電過程中,必要想維持電路有穩(wěn)恒電流。在放電過程中,必須不斷的把正電荷從負(fù)極板移動(dòng)到正極板。這個(gè)須不斷的把正電荷從負(fù)極板移動(dòng)到正極板。這個(gè)過程靠靜電場是不能完成的,必須有過程靠靜電場是不能完成的,必須有非靜電力非靜電力把把正電荷從負(fù)極搬到正極,才能在導(dǎo)體兩端維持有正電荷從負(fù)極搬到正極,才能在導(dǎo)體兩端維持有
12、穩(wěn)恒的電勢差。穩(wěn)恒的電勢差。 提供非靜電力的裝置就是電源,提供非靜電力的裝置就是電源,如化學(xué)電池、硅太陽能如化學(xué)電池、硅太陽能電池、發(fā)電機(jī)等。電源是把能量轉(zhuǎn)換為電能的裝置。靜電電池、發(fā)電機(jī)等。電源是把能量轉(zhuǎn)換為電能的裝置。靜電力使正電荷從高電勢到低電勢。力使正電荷從高電勢到低電勢。電源的作用:使正電荷從電源的作用:使正電荷從低電勢到高電勢。低電勢到高電勢。 單位正電荷所受的非靜電力,定義為非靜電性電場的單位正電荷所受的非靜電力,定義為非靜電性電場的電場強(qiáng)度,用電場強(qiáng)度,用K K表示。表示。25 在電源內(nèi)部,即內(nèi)電路電荷同時(shí)受到恒在電源內(nèi)部,即內(nèi)電路電荷同時(shí)受到恒定電場和非靜電性電場的作用,而在
13、外電定電場和非靜電性電場的作用,而在外電路卻只有恒定電場的作用。路卻只有恒定電場的作用。lKqlEq-lKEq-lEqAddd)(d+遵從環(huán)路定理,上式化為遵從環(huán)路定理,上式化為 lKqAd 因此,在電荷因此,在電荷q沿電路運(yùn)行一周的過程中,沿電路運(yùn)行一周的過程中, 各種電場所各種電場所作的總功為作的總功為:2. 電源電動(dòng)勢電源電動(dòng)勢+26 電源的電動(dòng)勢電源的電動(dòng)勢 定義為單位正電荷沿閉合電路定義為單位正電荷沿閉合電路運(yùn)行一周非靜電力所作的功,表征運(yùn)行一周非靜電力所作的功,表征電源將其它形電源將其它形式的能量轉(zhuǎn)變?yōu)殡娔艿谋绢I(lǐng)式的能量轉(zhuǎn)變?yōu)殡娔艿谋绢I(lǐng)。lKqAdlKd 非靜電性電場只存在于電源內(nèi)
14、部,其方向沿電非靜電性電場只存在于電源內(nèi)部,其方向沿電源內(nèi)部從負(fù)極指向正極。于是源內(nèi)部從負(fù)極指向正極。于是 是標(biāo)量,可取正、反兩種方向。是標(biāo)量,可取正、反兩種方向。我們規(guī)定,從我們規(guī)定,從負(fù)極經(jīng)電源內(nèi)部到正極的方向?yàn)殡妱?dòng)勢的方向。負(fù)極經(jīng)電源內(nèi)部到正極的方向?yàn)殡妱?dòng)勢的方向。27討論:討論:1.如果電路中存在多個(gè)電源,如果電路中存在多個(gè)電源,其總電動(dòng)勢為其總電動(dòng)勢為ddddddABCDAABBCCDDAKlKlKlKlKlKl 1234 該式表明,在回路中存在多個(gè)電源的情況下,該式表明,在回路中存在多個(gè)電源的情況下,整個(gè)電路的總電動(dòng)勢必定等于各電源電動(dòng)勢的代整個(gè)電路的總電動(dòng)勢必定等于各電源電動(dòng)勢的
15、代數(shù)和。數(shù)和。 28 上式選定了電動(dòng)勢的標(biāo)定方向是順時(shí)針方向,如上式選定了電動(dòng)勢的標(biāo)定方向是順時(shí)針方向,如 圖中環(huán)圖中環(huán)形箭頭所示。當(dāng)然也可以選擇逆時(shí)針方向?yàn)闃?biāo)定方向,這形箭頭所示。當(dāng)然也可以選擇逆時(shí)針方向?yàn)闃?biāo)定方向,這時(shí)總電動(dòng)勢應(yīng)為:時(shí)總電動(dòng)勢應(yīng)為: 1234注意:電動(dòng)勢與電勢差的區(qū)別注意:電動(dòng)勢與電勢差的區(qū)別lKd:與非靜電場相聯(lián)系,反映非靜電力:與非靜電場相聯(lián)系,反映非靜電力的作功本領(lǐng)(把正電荷從負(fù)極板移動(dòng)的作功本領(lǐng)(把正電荷從負(fù)極板移動(dòng)到正極板)到正極板)+d-UEl:與靜電場相聯(lián)系,反映靜電力的作:與靜電場相聯(lián)系,反映靜電力的作功本領(lǐng)(把正電荷從正極板移動(dòng)到負(fù)功本領(lǐng)(把正電荷從正極板
16、移動(dòng)到負(fù)極板)極板)2914.4 磁場力和磁感應(yīng)強(qiáng)度磁場力和磁感應(yīng)強(qiáng)度 一、磁現(xiàn)象一、磁現(xiàn)象 磁現(xiàn)象的發(fā)現(xiàn)比電現(xiàn)象早很多。東漢王充磁現(xiàn)象的發(fā)現(xiàn)比電現(xiàn)象早很多。東漢王充“司南勺司南勺”,北宋沈括航海用指南針。北宋沈括航海用指南針。漢(公元前漢(公元前206公元公元220年)。磁勺是用天然磁體年)。磁勺是用天然磁體磨成,置于地盤中心圓內(nèi),勺頭為磨成,置于地盤中心圓內(nèi),勺頭為N,勺尾為,勺尾為S,靜,靜止時(shí),因地磁作用,勺尾指向南方。止時(shí),因地磁作用,勺尾指向南方。 301. 磁極及其相互作用磁極及其相互作用(1) 磁鐵磁性最強(qiáng)區(qū)域稱為磁鐵磁性最強(qiáng)區(qū)域稱為磁極磁極。磁鐵指向北方的磁。磁鐵指向北方的磁
17、極為極為磁北極或磁北極或N極極;指向南方的為;指向南方的為磁南極或磁南極或S極;極;(2)同號(hào)磁極互相排斥,異號(hào)磁極互相吸引;同號(hào)磁極互相排斥,異號(hào)磁極互相吸引;(3)磁鐵可以被分解的很小,并且每個(gè)小磁鐵都具有磁鐵可以被分解的很小,并且每個(gè)小磁鐵都具有N和和S極,這說明極,這說明磁極不能單獨(dú)存在磁極不能單獨(dú)存在. 磁現(xiàn)象與電現(xiàn)象有很多類似,在自然界有獨(dú)立存磁現(xiàn)象與電現(xiàn)象有很多類似,在自然界有獨(dú)立存在的電荷,卻至今沒找到獨(dú)立存在的磁荷,即所謂在的電荷,卻至今沒找到獨(dú)立存在的磁荷,即所謂“磁單極子磁單極子”。 尋找尋找“磁單極子磁單極子”是當(dāng)今科學(xué)界面臨的重大課題是當(dāng)今科學(xué)界面臨的重大課題之一。之
18、一。 31 1820年奧斯特年奧斯特發(fā)現(xiàn)電流的磁效應(yīng)后,人們才認(rèn)識(shí)發(fā)現(xiàn)電流的磁效應(yīng)后,人們才認(rèn)識(shí)到磁與電的密切聯(lián)系;到磁與電的密切聯(lián)系; 2. 一切磁現(xiàn)象起源于電流一切磁現(xiàn)象起源于電流同年,安培發(fā)現(xiàn)了磁鐵對(duì)電流的作用;同年,安培發(fā)現(xiàn)了磁鐵對(duì)電流的作用; 1821年,安培發(fā)現(xiàn)了電流與電流之間也能發(fā)生相年,安培發(fā)現(xiàn)了電流與電流之間也能發(fā)生相互作用;互作用;另外,運(yùn)動(dòng)的電荷也存在磁效應(yīng)另外,運(yùn)動(dòng)的電荷也存在磁效應(yīng)32 上述實(shí)驗(yàn)表明,電流與電流之間,磁鐵與電流之上述實(shí)驗(yàn)表明,電流與電流之間,磁鐵與電流之間都存在相互作用,這種相互作用的力稱為間都存在相互作用,這種相互作用的力稱為磁力。磁力。磁力是通過磁
19、場來傳遞的磁力是通過磁場來傳遞的 同電荷周圍有電場一樣,磁鐵和電流周圍存在同電荷周圍有電場一樣,磁鐵和電流周圍存在磁場磁場磁鐵磁鐵電流電流磁磁 場場磁鐵磁鐵電流電流333. 物質(zhì)磁性的起源物質(zhì)磁性的起源安培分子電流假說安培分子電流假說 (1822) 一切磁現(xiàn)象都起源于電流,一切物質(zhì)的磁性都起一切磁現(xiàn)象都起源于電流,一切物質(zhì)的磁性都起源于構(gòu)成物質(zhì)的分子中存在的環(huán)形電流。源于構(gòu)成物質(zhì)的分子中存在的環(huán)形電流。這種環(huán)形這種環(huán)形電流稱為電流稱為分子電流分子電流。 分子電流相當(dāng)于一個(gè)分子電流相當(dāng)于一個(gè)基元磁基元磁體體,其磁場在軸線上的方向,其磁場在軸線上的方向用右手定則來判斷:用右手定則來判斷:INS 安
20、培分子電流假說安培分子電流假說與近代關(guān)于原子和分子結(jié)構(gòu)與近代關(guān)于原子和分子結(jié)構(gòu)的認(rèn)識(shí)相吻合。原子是由原子核和核外電子組成的認(rèn)識(shí)相吻合。原子是由原子核和核外電子組成的,電子的繞核運(yùn)動(dòng)就形成了經(jīng)典概念的電流。的,電子的繞核運(yùn)動(dòng)就形成了經(jīng)典概念的電流。 344. 磁現(xiàn)象的討論方法磁現(xiàn)象的討論方法點(diǎn)電荷點(diǎn)電荷庫侖定律庫侖定律電場強(qiáng)度電場強(qiáng)度電流元電流元安培定律安培定律磁感應(yīng)強(qiáng)度磁感應(yīng)強(qiáng)度351. 電流元電流元 任意形狀、大小的電流都是若干個(gè)電任意形狀、大小的電流都是若干個(gè)電流元組成的。流元組成的。IIdla. 電流強(qiáng)度與線元的乘積:電流強(qiáng)度與線元的乘積:Idlb. 矢量性:電流元的方向?yàn)槭噶啃裕弘娏髟?/p>
21、的方向?yàn)?的方向的方向dlc. 與運(yùn)動(dòng)電荷等效與運(yùn)動(dòng)電荷等效dqIdldlvdqdtd. 非獨(dú)立性非獨(dú)立性反映了電流元與電流元之間的磁相互作用力。反映了電流元與電流元之間的磁相互作用力。二、安培定律二、安培定律362. 安培定律安培定律 電流元與電流元之間的相互作用力,其電流元與電流元之間的相互作用力,其大小大小與兩與兩電流元的乘積成正比,與距離的平方成反比電流元的乘積成正比,與距離的平方成反比;方向:方向:根據(jù)右手螺旋定則來判斷。根據(jù)右手螺旋定則來判斷。1210221123121210122312()4()4I dlI dlrd FrI I dldlrr 710410 T m A(真空中的磁
22、導(dǎo)率)(真空中的磁導(dǎo)率)11I dl22I dl 12r12dF3721201 2121321()4I I dldlrdFr大?。捍笮。?12211212212sinsin4I I dl dldFr1是是 與與 的夾角的夾角11Idl12r2是是 與與22I dl1211I dlr和所決定平面的夾角方向由右手螺旋定則來判斷方向由右手螺旋定則來判斷11I dl受受 的作用力的作用力22I dl121012212312()4I I dldlrdFr 38例題例題1 求一對(duì)平行電流元之間的相互作用力求一對(duì)平行電流元之間的相互作用力12:dF解:解:12101 2212312001 2211 2212
23、1221212()444oI I dldlrdFrI I dldl nI I dl dlrrr 同理:同理:01 22121122214oI I dl dldFrr 11I dl22I dl 12r n12dF21dF 結(jié)論:結(jié)論:1. 1. 兩平行電流元之間的相互作用大小相等,方向兩平行電流元之間的相互作用大小相等,方向相反,吸引;相反,吸引;2.2.兩反平行電流元之間的相互作用大小相等,兩反平行電流元之間的相互作用大小相等,方向相反,排斥。方向相反,排斥。39例題例題2 求一對(duì)相互垂直電流元之間的相互作用力求一對(duì)相互垂直電流元之間的相互作用力11I dl22I dl 12r 12:dF解:
24、解:120dF 21:dF 21r 201 212121321001 2121 212222121()444I I dldlrdFrI I dldl nI I dldlrr n40三、磁感應(yīng)強(qiáng)度三、磁感應(yīng)強(qiáng)度1. 電場強(qiáng)度矢量電場強(qiáng)度矢量庫侖定律庫侖定律121 21 2201 21 214q qrFrr 如果如果q1是源電荷,是源電荷,q2是試探電荷,則是試探電荷,則11 21 222201 21 214qrFqqErr 11220121214qrErr412.磁感應(yīng)強(qiáng)度矢量(磁感應(yīng)強(qiáng)度矢量( )B 安培定律:安培定律:電流元與電流元之間的相互作用電流元與電流元之間的相互作用121012212
25、312()4I I dldlrdFr 注意:注意:在磁場中,電流元不獨(dú)立存在,若把在磁場中,電流元不獨(dú)立存在,若把22I dl視為試探電流元,則視為試探電流元,則 在在 所屬的回路對(duì)所屬的回路對(duì)該電流元的作用力就是該電流元的作用力就是 所受回路所受回路L1的作用力的作用力22I dl11I dl22I dlL1L211I dl22I dl1121012212312()4lI I dldlrFr 421121012212312()4lI I dldlrFr 112101122222312()4lI dlrFI dlI dlBr 其中:其中:112101312()4lI dlrBr 定義:定義:
26、為載流回路在電流元為載流回路在電流元 處的處的磁感應(yīng)強(qiáng)度磁感應(yīng)強(qiáng)度B 22I dl說明:說明:對(duì)應(yīng)于電場,對(duì)應(yīng)于電場, 應(yīng)該稱為磁場強(qiáng)度,但歷應(yīng)該稱為磁場強(qiáng)度,但歷史的原因,已有史的原因,已有 為磁場強(qiáng)度,故稱為磁場強(qiáng)度,故稱 為磁感為磁感應(yīng)強(qiáng)度。應(yīng)強(qiáng)度。B B H 43討論:討論:(1) 為矢量式,其標(biāo)量式為為矢量式,其標(biāo)量式為1222FI dlB 1222sinFI dl B 是是 與與 的夾角的夾角22I dl B (3)由于電流元與運(yùn)動(dòng)電荷等效)由于電流元與運(yùn)動(dòng)電荷等效 12FdqvB (2)對(duì)于任意載流回路在勻強(qiáng)磁場中所受力為)對(duì)于任意載流回路在勻強(qiáng)磁場中所受力為lFIdlB 44任
27、意帶電體在勻強(qiáng)磁場中所受的力:任意帶電體在勻強(qiáng)磁場中所受的力:BvqF0vBFmF方向:右手螺旋定則方向:右手螺旋定則 稱為洛倫茲力稱為洛倫茲力F(4)磁感應(yīng)強(qiáng)度的單位)磁感應(yīng)強(qiáng)度的單位單位單位特斯拉特斯拉(T), 或高斯(或高斯(G) 1T=104G45四、磁感應(yīng)線四、磁感應(yīng)線 磁場中某點(diǎn)磁場方向是確定磁場中某點(diǎn)磁場方向是確定的,的,磁感線不會(huì)相交磁感線不會(huì)相交。 載流導(dǎo)線周圍磁感線都是圍載流導(dǎo)線周圍磁感線都是圍繞電流的繞電流的閉合曲線閉合曲線,沒有起點(diǎn),沒有起點(diǎn),也沒有終點(diǎn)。也沒有終點(diǎn)。 磁感應(yīng)線形象表示磁場分布狀況:磁感應(yīng)線形象表示磁場分布狀況:曲線上每點(diǎn)曲線上每點(diǎn)切線方向與該點(diǎn)磁感應(yīng)強(qiáng)
28、度切線方向與該點(diǎn)磁感應(yīng)強(qiáng)度B方向一致;在與磁方向一致;在與磁場垂直的單位面積上穿過曲線的條數(shù),與該處場垂直的單位面積上穿過曲線的條數(shù),與該處B的大小成正比,即疏密程度反映出的大小成正比,即疏密程度反映出B的大小。的大小。BI46 長直電流周圍的磁感應(yīng)線,在垂直長直電流周圍的磁感應(yīng)線,在垂直于電流的平面內(nèi)磁感應(yīng)線是一系列同于電流的平面內(nèi)磁感應(yīng)線是一系列同心圓,圓心在電流與平面的交點(diǎn)上。心圓,圓心在電流與平面的交點(diǎn)上。BI磁感線和電流滿足右手螺旋法則。磁感線和電流滿足右手螺旋法則。47 任意曲面任意曲面 S 的的磁通量磁通量(magnetic flux) 定義為,定義為, 曲面上任意一點(diǎn)的磁感應(yīng)強(qiáng)
29、度曲面上任意一點(diǎn)的磁感應(yīng)強(qiáng)度B與該處面元與該處面元dS的標(biāo)積的標(biāo)積B dS 在整個(gè)曲面在整個(gè)曲面S上的代數(shù)和,即上的代數(shù)和,即SSBdBnPS 在國際單位制中,磁通量的單位是在國際單位制中,磁通量的單位是T m2,也稱,也稱為為Wb (韋伯韋伯)。 2m1T1Wb1 給出了通過任意閉合曲面的給出了通過任意閉合曲面的磁感應(yīng)線的條數(shù)。磁感應(yīng)線的條數(shù)。48 對(duì)閉合曲面,規(guī)定正法線方向垂直于曲面向外。對(duì)閉合曲面,規(guī)定正法線方向垂直于曲面向外。當(dāng)磁感線從曲面內(nèi)穿出時(shí),磁通量為正,而當(dāng)磁感當(dāng)磁感線從曲面內(nèi)穿出時(shí),磁通量為正,而當(dāng)磁感線從曲面外穿入時(shí),磁通量為負(fù)。線從曲面外穿入時(shí),磁通量為負(fù)。Bn 在不均勻
30、磁場中,通過在不均勻磁場中,通過任意面積元的磁通量:任意面積元的磁通量: 在均勻磁場中通過面積在均勻磁場中通過面積S 的磁通量為:的磁通量為:cosBSSBSBdcosddd cosdB SBS495051 前面,我們已經(jīng)利用電流周圍的磁場定義了磁前面,我們已經(jīng)利用電流周圍的磁場定義了磁感應(yīng)強(qiáng)度,感應(yīng)強(qiáng)度,下面,我們的任務(wù)是下面,我們的任務(wù)是求不同形狀的電求不同形狀的電流周圍的磁場分布流周圍的磁場分布。52 14-5 畢奧畢奧 薩伐爾定律薩伐爾定律一、畢奧一、畢奧 薩伐爾定律薩伐爾定律在安培定律中,電流元與電流元之間的作用力為:在安培定律中,電流元與電流元之間的作用力為:12101221231
31、2()4I I dldlrdFr 如果將如果將 視為試探電流元,則視為試探電流元,則22I dl12101122222312()4I dlrdFI dlI dldBr 12101312()4I dlrdBr 5303dd4IrlrB寫成通式:寫成通式: 該式即為該式即為畢奧畢奧 薩伐爾定律。電流元在空間某薩伐爾定律。電流元在空間某點(diǎn)點(diǎn)產(chǎn)生產(chǎn)生的磁感應(yīng)強(qiáng)度大小與電流元大小成正比,的磁感應(yīng)強(qiáng)度大小與電流元大小成正比,與電流元和由電流元到點(diǎn)與電流元和由電流元到點(diǎn)P的矢量間夾角正弦成的矢量間夾角正弦成正比,與電流元到點(diǎn)正比,與電流元到點(diǎn)P的距離的平方成反比;的距離的平方成反比; 方向垂直于方向垂直于
32、和和 所組成的平面,指向滿足右所組成的平面,指向滿足右手定則。手定則。lId dr54 點(diǎn)點(diǎn)P 的磁感應(yīng)強(qiáng)度的大小為的磁感應(yīng)強(qiáng)度的大小為02d sind4I lBrLrI30d4rlB 不能由實(shí)驗(yàn)直接證明,但結(jié)果都和實(shí)驗(yàn)相符合。不能由實(shí)驗(yàn)直接證明,但結(jié)果都和實(shí)驗(yàn)相符合。先化為分量式后分別積分先化為分量式后分別積分。 整個(gè)載流導(dǎo)線整個(gè)載流導(dǎo)線L在點(diǎn)在點(diǎn)P產(chǎn)生的磁感應(yīng)強(qiáng)度,產(chǎn)生的磁感應(yīng)強(qiáng)度, 等于各電流元在點(diǎn)等于各電流元在點(diǎn)P產(chǎn)生的產(chǎn)生的 的矢量和,即的矢量和,即 BPlId dBd dr IL55 例例1:在一直導(dǎo)線:在一直導(dǎo)線MN中通以電流中通以電流I,求距此導(dǎo),求距此導(dǎo)線為線為a的點(diǎn)的點(diǎn)P處
33、的處的B。從導(dǎo)線兩端。從導(dǎo)線兩端M和和N到點(diǎn)到點(diǎn)P的連的連線與直導(dǎo)線之間的夾角分別為線與直導(dǎo)線之間的夾角分別為 1和和 2 。 解:在距點(diǎn)解:在距點(diǎn)O為為l處取電流元處取電流元Idl,Idl在點(diǎn)在點(diǎn)P產(chǎn)生產(chǎn)生B,方向垂直于紙面,方向垂直于紙面向里向里 ddBI lr024sin24dd0rlIBBsin lrPIONMaP 1 2Idl二、畢奧二、畢奧 薩伐爾定律的應(yīng)用薩伐爾定律的應(yīng)用56l =acot( )= -a cot , dl=acsc2 d lrPIONMaP 1 2Idl2222222(1cot)cscrlaaa202220sindd4sincsc4cscIlBBrIada 0si
34、n4Ida 57)cos(cossin21004d421aIaIB 無限長載流直導(dǎo)線,無限長載流直導(dǎo)線, 1=0, 2= ,距離導(dǎo)線,距離導(dǎo)線a處的磁感應(yīng)強(qiáng)度為處的磁感應(yīng)強(qiáng)度為aIB24058解:其磁場方向只有沿解:其磁場方向只有沿x軸的分量軸的分量而垂直于而垂直于x 軸的分量求和為零。軸的分量求和為零。例例2:求載流圓線圈在其軸上的磁場。:求載流圓線圈在其軸上的磁場。cosddBBx22cosxRRrR222Rxr;lrIBd4d20232220302d4d20/)(xRIRlrIRBBRxxrxBdxBdBdIROIdlP59磁場方向與電流滿足磁場方向與電流滿足右手螺旋法則右手螺旋法則。*
35、兩種特殊的情況:兩種特殊的情況:軸上無窮遠(yuǎn)的磁感應(yīng)強(qiáng)度軸上無窮遠(yuǎn)的磁感應(yīng)強(qiáng)度x230320 ; 22RSxISxIRBRIB20 x=0時(shí)圓電流環(huán)時(shí)圓電流環(huán)中心磁感強(qiáng)度中心磁感強(qiáng)度 RIxP232220302d4d20/)(xRIRlrIRBBRx60引入引入磁矩磁矩描述圓形電流或載流平面線圈磁行為。描述圓形電流或載流平面線圈磁行為。 S是圓形電流包圍平面面積,是圓形電流包圍平面面積,方方向與電流的方向向與電流的方向滿足右螺旋關(guān)系滿足右螺旋關(guān)系。mSRI圓形電流的磁矩圓形電流的磁矩: SIm圓電流圓電流 223030nxmxmB 多匝平面線圈電流多匝平面線圈電流I 應(yīng)以線圈的總匝數(shù)與每匝線應(yīng)以
36、線圈的總匝數(shù)與每匝線圈的電流的乘積代替圈的電流的乘積代替 2022 3/22()NBRIRx61232220d2dxRxInRB解解:長度為:長度為dx內(nèi)的各匝內(nèi)的各匝圓線圈的總效果,是一圓線圈的總效果,是一匝圓電流線圈的匝圓電流線圈的ndx倍。倍。例例3:載流螺旋管:載流螺旋管(solenoid)在其軸上的磁場在其軸上的磁場 求半徑為求半徑為R,總長度,總長度l ,單,單位長度上的匝數(shù)為位長度上的匝數(shù)為n 的螺線的螺線管在其軸線上一點(diǎn)的磁場?管在其軸線上一點(diǎn)的磁場?選坐標(biāo)如圖示選坐標(biāo)如圖示lxRIdx21x1x2212/32220d2dxxxRxRnIBBpoBRl622121dsin2cs
37、cdcsc2033230nIRRnIB選坐標(biāo)如圖示選坐標(biāo)如圖示 cotRx dcscd2Rx2222csc RxR 載流螺旋管在其軸上的磁場,磁場方向與電流載流螺旋管在其軸上的磁場,磁場方向與電流滿足右手螺旋法則。滿足右手螺旋法則。lxRIxd21x1x2po1202coscosnIB212/32220d2dxxxRxRnIBB63)cos(cos2 120nIB討論幾種特殊情況討論幾種特殊情況0 , 21nIB01.若若 l R ,在無限長的螺線管中心處,在無限長的螺線管中心處2.在管端口處:在管端口處:0 , 2/ ; 2/ , 021nIB021Bl /2 l /2xnI020nIO64
38、 從以上分析可以看出長直載流螺線管的磁場從以上分析可以看出長直載流螺線管的磁場分布情況:分布情況:在螺線管中心區(qū)域?yàn)榫鶆虼艌?,在在螺線管中心區(qū)域?yàn)榫鶆虼艌觯诠芏丝谔?,磁場等于中心處的一半。管端口處,磁場等于中心處的一半。B0I0I65例題例題4 4 兩段同心圓弧導(dǎo)線與沿半徑方向的導(dǎo)線構(gòu)兩段同心圓弧導(dǎo)線與沿半徑方向的導(dǎo)線構(gòu)成一個(gè)閉合的扇形載流回路,如圖成一個(gè)閉合的扇形載流回路,如圖CDEFCCDEFC所示。已所示。已知圓弧所對(duì)應(yīng)的中心角為知圓弧所對(duì)應(yīng)的中心角為 ,兩圓弧的半徑分別為,兩圓弧的半徑分別為R R1 1和和R R2 2,回路電流為,回路電流為I I,求圓心,求圓心O O處的磁感應(yīng)強(qiáng)度
39、處的磁感應(yīng)強(qiáng)度。 解解: 由于圓心由于圓心O處于直導(dǎo)線處于直導(dǎo)線ED和和FC的延長線上,所以這兩段的延長線上,所以這兩段直導(dǎo)線在直導(dǎo)線在O點(diǎn)產(chǎn)生的磁感應(yīng)強(qiáng)點(diǎn)產(chǎn)生的磁感應(yīng)強(qiáng)度為零。度為零。 先看圓弧電流先看圓弧電流EF。該圓電流。該圓電流上的任一電流元上的任一電流元Idl在在O點(diǎn)產(chǎn)生點(diǎn)產(chǎn)生的磁感應(yīng)強(qiáng)度的磁感應(yīng)強(qiáng)度dB1,根據(jù)畢奧,根據(jù)畢奧 薩伐爾定律得薩伐爾定律得 :66ddBI lR10124 dB1的方向垂直于板面向外,的方向垂直于板面向外,并且無論電流元并且無論電流元Idl取在何處,取在何處,dB1的方向都相同的方向都相同 積分積分 :BIRlIRRIRl1012001210014441d
40、d 同樣可以求得圓弧電流同樣可以求得圓弧電流CD在在O點(diǎn)產(chǎn)生的磁感應(yīng)點(diǎn)產(chǎn)生的磁感應(yīng)強(qiáng)度強(qiáng)度B2的大小為的大小為 BIRlIRRIRl2022002220024442dd=B2的方向垂直于板面向里的方向垂直于板面向里 67整個(gè)扇形載流回路在整個(gè)扇形載流回路在O點(diǎn)產(chǎn)生的磁感應(yīng)強(qiáng)度為點(diǎn)產(chǎn)生的磁感應(yīng)強(qiáng)度為 BBBRRI21021411()B的方向與的方向與B2的方向相同的方向相同 68例例5 單個(gè)單個(gè) 運(yùn)動(dòng)電荷的磁場運(yùn)動(dòng)電荷的磁場30d4drIrlB單個(gè)載流子產(chǎn)生的磁場單個(gè)載流子產(chǎn)生的磁場B304rrvq若有單個(gè)運(yùn)動(dòng)的電荷以若有單個(gè)運(yùn)動(dòng)的電荷以V運(yùn)動(dòng)運(yùn)動(dòng)v+Br運(yùn)動(dòng)正電荷的磁場運(yùn)動(dòng)正電荷的磁場dqId
41、ldlvdqqvdt69一、一、安培環(huán)路定理的表述安培環(huán)路定理的表述 恒定電流磁場中,磁感應(yīng)強(qiáng)度沿任意閉合環(huán)路恒定電流磁場中,磁感應(yīng)強(qiáng)度沿任意閉合環(huán)路的積分等于此環(huán)路所包圍的電流代數(shù)和的的積分等于此環(huán)路所包圍的電流代數(shù)和的 0倍。倍。表達(dá)式表達(dá)式0()dinsideiLi LBlI符號(hào)規(guī)定:符號(hào)規(guī)定:穿過回路穿過回路 L 的電流的電流方向與方向與 L 的環(huán)繞方向服從右手的環(huán)繞方向服從右手關(guān)系的,關(guān)系的,I 為正,否則為負(fù)。為正,否則為負(fù)。 不穿過回路邊界所圍面積的電流不計(jì)在內(nèi)。不穿過回路邊界所圍面積的電流不計(jì)在內(nèi)。1IiI1nIknI2I 14-6 磁場的安培環(huán)路定理磁場的安培環(huán)路定理70二、
42、二、 安培環(huán)路定理的證明安培環(huán)路定理的證明a. 在圍繞單根無限長載流導(dǎo)線的垂直平面內(nèi)的任意在圍繞單根無限長載流導(dǎo)線的垂直平面內(nèi)的任意回路回路 ddBrlBIrrIlBLL00d2dILBddldrb. 不包圍電流不包圍電流 ,在垂直無限長載流導(dǎo)線平面內(nèi)的任,在垂直無限長載流導(dǎo)線平面內(nèi)的任一閉合路徑一閉合路徑L21dddLLLlBlBlB0)(20II1LL271 c. 圍繞多根載流導(dǎo)線的任一回路圍繞多根載流導(dǎo)線的任一回路 L 設(shè)設(shè) 電流過回路,電流過回路, 根電流不穿過回路根電流不穿過回路L。令。令 分別為分別為單根導(dǎo)線產(chǎn)生的磁場單根導(dǎo)線產(chǎn)生的磁場nIII,21knnnIII,21knBBB,
43、21101dIlBLnLnIlB0d0d1LnlB0dLknlBiiLIlB0d所有電流所有電流的總場的總場穿過回路穿過回路的電流的電流任意回路任意回路72在理解這個(gè)定理時(shí),應(yīng)注意以下幾個(gè)問題在理解這個(gè)定理時(shí),應(yīng)注意以下幾個(gè)問題 (1) 定理中的定理中的B是安培環(huán)路是安培環(huán)路L上任意一點(diǎn)的磁感上任意一點(diǎn)的磁感應(yīng)強(qiáng)度,它是由空間所有電流共同產(chǎn)生的應(yīng)強(qiáng)度,它是由空間所有電流共同產(chǎn)生的。定理中。定理中的的 Ii則是安培環(huán)路則是安培環(huán)路L所包圍的電流的代數(shù)和。所包圍的電流的代數(shù)和。(3)定理只適用于穩(wěn)恒電流的磁場。由于穩(wěn)恒電)定理只適用于穩(wěn)恒電流的磁場。由于穩(wěn)恒電流是閉合的,所以對(duì)于不閉合的流是閉合的
44、,所以對(duì)于不閉合的有限長有限長的載流導(dǎo)線,的載流導(dǎo)線,安培環(huán)路定理不適用;安培環(huán)路定理不適用;(2)矢量)矢量B的環(huán)路積分不恒等于零,說明穩(wěn)恒磁場的環(huán)路積分不恒等于零,說明穩(wěn)恒磁場不是保守力場,而是不是保守力場,而是有旋場有旋場。iiLIlB0d73 邊長為邊長為2a的正方形閉合回路的正方形閉合回路CDEFC,所通電流為,所通電流為I?,F(xiàn)僅討?,F(xiàn)僅討論論CD段,取中心處于其中點(diǎn)且段,取中心處于其中點(diǎn)且與其垂直的半徑為與其垂直的半徑為r的圓為安培的圓為安培環(huán)路,環(huán)路,CD段所激發(fā)的磁場在圓段所激發(fā)的磁場在圓上各點(diǎn)的磁感應(yīng)強(qiáng)度為上各點(diǎn)的磁感應(yīng)強(qiáng)度為BIar arCD022 1 22 ()/BCD的
45、方向與圓周相切,與電流的方向成右螺旋的方向與圓周相切,與電流的方向成右螺旋關(guān)系。沿此圓周的環(huán)路積分為關(guān)系。沿此圓周的環(huán)路積分為BlCDIaarId022 1 20()/74(4)若產(chǎn)生磁場的電流在導(dǎo)體中沿截面連續(xù)分布,則:)若產(chǎn)生磁場的電流在導(dǎo)體中沿截面連續(xù)分布,則:均勻分布:均勻分布:Ij S 非均勻分布:非均勻分布:sIj dS 環(huán)路定理:環(huán)路定理:0lsB dlj dS (5)如果?。┤绻∪我庖粭l磁感應(yīng)線作為安培環(huán)路任意一條磁感應(yīng)線作為安培環(huán)路,并沿,并沿B的方向計(jì)算積分的方向計(jì)算積分 B dl,由于總有,由于總有B dl 0,所以必,所以必定有定有 Bld0 根據(jù)安培環(huán)路定理,該安培
46、環(huán)路一定包圍電流。根據(jù)安培環(huán)路定理,該安培環(huán)路一定包圍電流。由此可得結(jié)論:由此可得結(jié)論:磁感應(yīng)線總是與產(chǎn)生它的電流回路磁感應(yīng)線總是與產(chǎn)生它的電流回路套連在一起的套連在一起的。75三、三、 安培環(huán)路定理的應(yīng)用安培環(huán)路定理的應(yīng)用例例1:求無限長均勻載流圓柱體磁場分布。:求無限長均勻載流圓柱體磁場分布。解:圓柱體軸對(duì)稱,以軸上一點(diǎn)為解:圓柱體軸對(duì)稱,以軸上一點(diǎn)為圓心取垂直軸的平面內(nèi)半徑為圓心取垂直軸的平面內(nèi)半徑為 r 的的圓為安培環(huán)路圓為安培環(huán)路rIB20Rr IBdIrBlBL02d 圓柱外磁場與長直電流磁場相同,而內(nèi)部的磁圓柱外磁場與長直電流磁場相同,而內(nèi)部的磁場與場與r成正比;成正比;若是柱面
47、電流則內(nèi)部磁場為零若是柱面電流則內(nèi)部磁場為零。Rr 202202 d RIrBRIrlBrBr dldl76例例2: 求載流無限長直螺線管內(nèi)任一點(diǎn)的磁場。求載流無限長直螺線管內(nèi)任一點(diǎn)的磁場。由對(duì)稱性分析場結(jié)構(gòu):由對(duì)稱性分析場結(jié)構(gòu): 1. 磁場只有與軸平行的水平分量;磁場只有與軸平行的水平分量; 2.因?yàn)槭菬o限長,在與軸等距離的平行線上因?yàn)槭菬o限長,在與軸等距離的平行線上磁感應(yīng)強(qiáng)度相等。磁感應(yīng)強(qiáng)度相等。B 解:一個(gè)單位長度上有解:一個(gè)單位長度上有 n匝的無限長直螺線管匝的無限長直螺線管由于是密繞,每匝視為由于是密繞,每匝視為圓線圈。圓線圈。77 取取 L 矩形回路矩形回路, ab 邊、邊、cd 邊均與軸平行,另邊均與軸平行,另兩個(gè)邊兩個(gè)邊bc、da 垂直于軸。垂直于軸。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 無機(jī)顏料制造考核試卷
- 樂器聲音的數(shù)字化處理與優(yōu)化考核試卷
- 木樓梯的聲學(xué)性能改善措施考核試卷
- 勞動(dòng)法律法規(guī)解讀考核試卷
- 固體廢物處理與環(huán)??萍紕?chuàng)新考核試卷
- 體育會(huì)展新媒體運(yùn)營與粉絲經(jīng)濟(jì)考核試卷
- 體育經(jīng)紀(jì)公司體育場館運(yùn)營與管理策略考核試卷
- 房屋改建施工合同范本
- 簡易土建勞務(wù)合同范本
- 俱樂部合同范本模板
- 護(hù)理學(xué)基礎(chǔ)期末試卷及答案
- IMS攪拌樁施工方案
- 我的家鄉(xiāng)廣西南寧宣傳簡介
- 變廢為寶-小學(xué)科學(xué)高段活動(dòng)案例
- 四川省政府采購專家考試試題
- 證明無親子關(guān)系證明模板
- 消防工程擬投入主要施工設(shè)備機(jī)具表
- 4年級(jí)寫景類文章閱讀課件
- 《戰(zhàn)國策》教學(xué)講解課件
- 北師大版七年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)課件【完整版】
- 小動(dòng)物樂陶陶(課件)(共9張PPT)-人教版勞動(dòng)二年級(jí)下冊(cè)
評(píng)論
0/150
提交評(píng)論